

Trinity FieldsGround Investigation Report A110489-6-1

Caerphilly County Borough Council September 2020 Prepared by WYG Environment Planning Transport Limited.

DOCUMENT CONTROL

Document:	Ground Investigation Report
Project:	Trinity Fields
Client:	Caerphilly County Borough Council
Job Number:	A110489-5-1
File Origin:	\\Cardiff31\dataold\Environmental\projects\A110489-6-1 Trinity Fields GI\Report\A110489-6-1_Trinity Fields_GI Rpt_V1_Issue.docx

Revision:	V1			
Date:	September 2020			
Prepared by:		Checked by:	Approved By:	
Abrookes		Kwoodhare	Chan W	
Sophie Brookes Graduate Enviro Engineer		Katy Woodhouse Geoenvironmental Consultant	Chris Pugh Technical Director	
Prepared by:				
V. VIII				
Paul Vincent Principal Engine	eering Consultant			
Description of revision:				

First Draft

CONTENTS

EXE(CUTIV	E SUMMARY	1
1.0	Intro	oduction	3
	1.1	Instruction	3
	1.2	Brief	3
	1.3	Proposed Development	4
	1.4	Report Scope	4
	1.5	Limitations	4
2.0	Sum	mary of Site Information	5
	2.1	Location	5
	2.2	Site Description	5
	2.3	Summary of Site History	5
	2.4	Geology, Hydrogeology, Hydrology and Radon	6
3.0	Site	Investigation	8
	3.1	Scope	8
4.0	Grou	ınd Conditions Encountered	9
	4.1	Strata Encountered	9
	4.2	Obstructions	0
	4.3	Groundwater	1
	4.4	In Situ Testing1	1
	4.5	Visual or Olfactory Evidence of Contamination1	2
5.0	Labo	pratory Testing1	3
	5.1	Geotechnical Testing1	3
	5.2	Environmental Testing	3
6.0	Grou	ındwater and Gas Monitoring1	5

	6.1	Groundwater Monitoring	15
	* Bas	e of boreholes silted between visits. Depth included as depth measured on final visit	15
	6.2	Ground Gas Monitoring	15
7.0	Soil I	nfiltration Testing	. 17
	7.1	Background	17
	7.2	Test Locations	17
	7.3	Soil Infiltration Tests	17
	7.4	Ground Conditions	18
	7.5	Constraints and Limitations	18
8.0	Geote	echnical Assessment	. 19
	8.1	Ground Conditions	19
	8.2	Soil Properties	19
9.0	Geote	echnical Design Considerations	. 20
	9.1	Proposed Development	20
	9.2	Earthworks	20
	9.3	Foundations	20
	9.4	Floor Slabs	20
	9.5	Chemical Attack on Buried Concrete	21
	9.6	Pavements	21
	9.7	Temporary Works	21
	9.8	Drainage	21
10.0	Groui	nd Contamination Assessment – Human Health	. 22
	10.1	Introduction	22
	10.2	Assessment Criteria	22
	10.3	Tier 1 – Soil Screening	24
	10.4	Asbestos	24

11.0	Grou	nd Contamination Assessment – Wider Environment	25
	11.1	Introduction	.25
	11.2	Assessment Criteria	.25
	11.3	Soil Derived Leachate Methodology	.26
	11.4	Tier 1 Screening Assessment – Soil Derived Leachate	.26
	11.5	Tier 1 Screening Assessment – Groundwater	.28
12.0	Prelir	minary Ground Gas Assessment	29
	12.1	Introduction	.29
	12.2	Preliminary Ground Gas Risk Assessment	.31
	12.3	Summary and Discussion	.33
13.0	Conc	eptual Site Model and Ground Contamination Risk Assessment	34
	13.1	Overview	.34
	13.2	Current Site Usage and Proposed Development	.34
	13.3	Conceptual Site Model	.35
	13.4	Ground Conditions Risk Assessment	.36
14.0	Conc	lusions and Recommendations	39
	14.1	Ground Contamination	.39
	14.2	Geotechnical	.39
	14.3	Recommendations	.40
15.0	Note	S	41
16.0	Gloss	sary	42
17.0	Refe	rences	43
LIST	OF TA	ABLES	
Table	1 – Sı	ummary of Ground Conditions Encountered	9
		ummary of TRL Probe Results	
		ummary of Soil Infiltration Testing	
Table	4 - Su	mmary of Geotechnical Testing	.13

Table 5 - Summary of Environmental Testing	14
Table 6- Summary of groundwater levels	15
Table 7 – Summary of phase 1 Ground Gas monitoring	15
Table 8 Summary of Soil Infiltration Test Locations	17
Table 9 Summary of Soil Infiltration Test Results	18
Table 10 - Summary of test results within the coarse-grained alluvial deposits	19
Table 11 – Summary of Exceedances within Soil Derived Leachate Samples	26
Table 12 - M-BAT adjusted Screening Values for Heavy Metals - Soil Derived Leachate	27
Table 13 – Summary of Exceedances within Groundwater Samples	28
Table 14 - M-BAT adjusted Screening Values for Heavy Metals – Groundwater	28
Table 15 –GSV Classification (Modified Wilson and Card Methodology)	30
Table 16 –NHBC Traffic Light Classification	31
Table 17 – Initial GSV Calculations	32
Table 18- CIRIA C552 Qualitative Risk Assessment	37

FIGURES

Figure 1 – Site Location Plan

Figure 2 – Site Investigation Layout Plan

PROPOSED DEVELOPMENT PLAN

PLATES

APPENDICES

Appendix A – Report Conditions

Appendix B – Exploratory Hole Logs

Appendix C - TRL Probe Test Results

Appendix D – Soil Infiltration Test Results

Appendix E – Geotechnical Laboratory Test Results

Appendix F – Chemical Laboratory Test Results

Appendix G – Groundwater and Ground Gas Monitoring Data

Appendix H - CIRIA C552 Risk Methodology

EXECUTIVE SUMMARY

The Site	The proposed development will involve a large single storey extension to the existing Trinity Fields school building, encompassing the current playground, to form a courtyard. Additional play areas, school allotment and car parking are proposed to the south of the proposed extension. The site area is approximately 3.84ha in area. An approximate postcode of the school site is CF82 7XW.			
DTS Summary	Earliest mapping from 1879 indicates that the site remained largely undeveloped until a football ground and sports ground was first recorded on 1960 mapping. Trinity Fields School is shown from historical mapping from 2006 onwards. The surrounding site area generally comprises a mixed commercial residential setting. The BGS does not record significant Made Ground deposits as being present onsite. However, Made Ground is anticipated in the north associated with the current school development. Furthermore, limited reworked material may be present beneath the sports pitch associated with any cut and fill activities associated with the levelling of the pitch. Glaciofluvial deposits are shown to underly the site, comprising Devensian aged sands and gravels. The BGS Geoindex indicates the site is underlain by the Hughes Member, which forms part of the 'Upper Pennant Measures' of the Pennant Sandstone Formation. The Hughes Member (sandstone bedrock) and glaciofluvial sands and gravels are designated as Secondary A Aquifers.			
Site Investigation	 The scope of the site investigation included the following: Ten window sample boreholes (designated WS01 to WS10) to a maximum depth of 5.00m bgl; Five cable percussion boreholes through superficial deposits until refusal; Two machine excavated trial pits (designated SA01 and SA02) in which soil infiltration testing was undertaken; Seven in situ CBR tests using TRL-DCP method; Installation of 5 no. ground gas and groundwater monitoring wells; On-site inspection and logging of recovered samples; Representative soil samples taken and submitted for geotechnical classification testing; Representative soil samples taken, submitted and tested for a suite of potential contaminants; and Three return visits to monitor ground gas and groundwater levels, with one round of groundwater sampling. 			
Ground Conditions	The sequence of strata encountered beneath the site generally comprised; Topsoil (GL – 0.15 mbgl) Made Ground (to a maximum depth of 1.20mbgl) Glaciofluvial deposits (to a maximum depth of 4.60mbgl); and			

1

	Hughes Member (inferred to a maximum depth of 4.65mbgl).
Ground Contamination	Only limited Made Ground has been identified on the site and laboratory testing has indicated that the site is suitable a public open space end use in line with the proposed development as part of the extension to the school. Asbestos containing materials have not been identified within the near surface soils and risks to the wider environment are considered to be suitably low.
	The site is categorised as Characteristic Situation 1 (low risk) under the Wilson and Card classification presented in CIRIA 665 as such, gas protection measures are not required within new developments.
Geotechnical Assessment	The shallow, generally coarse grained Glaciofluvial deposits were identified in all positions immediately below the Topsoil and Made Ground. Shallow spread foundations placed within these soils at a minimum depth of 0.85m bgl may be designed to an allowable net bearing pressure of 200kPa. Floor slabs may be ground bearing, assuming any topsoil and localised Made Ground are stripped and replaced with compacted granular fill. The Design Sulphate Class for the site, as defined in BRE Special Digest 1, be taken as DS-1, and the Aggressive Chemical Environment for Concrete (ACEC) site classification be taken as AC-1. For pavement design, a conservative CBR value of 5% is recommended. Shallow excavations are likely to remain stable in the short term although some localised collapse may occur. Shallow groundwater (<2m bgl) was not encountered although levels can vary seasonal.
Conclusions and Recommendations	Within the context of ground contamination, no further risk management procedures are recommended with respect to the proposed development of the site. However, it is recommended that a proactive approach is adopted during the future development of the site to identify and assess any previously unidentified contamination which may be encountered during development works.

1.0 INTRODUCTION

1.1 Instruction

WYG Environment Planning Transport Ltd (WYG) was commissioned by Caerphilly County Brough Council (the client) to undertake an Intrusive Ground Investigation for a site known as Trinity Fields School, Ystrad Mynach (known hereafter as "the site").

The location of the site is shown on Figure 1.

This report should be read in conjunction with the following Desk Top Study, previously presented for the site.

WYG, 2019. Trinity Fields. Phase 1 Geoenvironmental Assessment. Desk Top Study.
 Reference A110489-6. V1 May 2019.

It should be noted that the DTS report covered a larger area than the current area considered within the ground investigation presented in this report.

1.2 Brief

The brief was to provide an intrusive ground investigation to provide information on the ground conditions and enable a geotechnical assessment and contaminated land risk assessment to support the proposed development of the site.

The work was designed to comprise the following elements:

- Ground investigation comprising of cable percussion drilling, windowless sampling and soil infiltration testing;
- Installation of six ground gas and groundwater monitoring wells;
- On-site inspection and logging of recovered samples;
- Representative soil samples taken and submitted for geotechnical classification testing;
- Representative soil samples submitted and tested for a suite of potential contaminants;
- Three return visits to monitor ground gas and groundwater levels;
- Preparation of a Ground Investigation report.

1.3 Proposed Development

It is understood that the proposed development will involve a large single storey extension to the existing school building, encompassing the current playground, to form a courtyard. Additional play areas, school allotment and car parking are proposed to the south of the proposed extension.

1.4 Report Scope

This report includes the following key elements:

- Full factual records of the site works carried out;
- Summary of the ground conditions encountered;
- In-Situ testing results;
- Environmental laboratory testing results;
- · Geotechnical laboratory testing results;
- Interpretation of geotechnical and environmental laboratory data, including a qualitative ground contamination risk assessment (compliant with CIRIA 552 (CIRIA, 2001) methodology);
- An executive summary of the report to allow a rapid, layman's overview.

1.5 Limitations

The recommendations and opinions expressed in this report are based on information obtained as part of the desk study or provided by others. Information provided from other sources is taken in good faith and WYG cannot guarantee its accuracy.

This report is subject to the report conditions presented in Appendix A.

The information contained in this report is intended for the use of Caerphilly County Borough Council (CCBC) and WYG can take no responsibility for the use of this information by any third party or for uses other than that described in this report or detailed within the terms of our engagement.

2.0 SUMMARY OF SITE INFORMATION

2.1 Location

The site is located off Caerphilly Road, to the south of Ystrad Mynach town centre, is approximately 3.84ha in area and is centred on National Grid Reference (NGR) 314440, 193920. The approximate postcode of the site is CF82 7XW.

The site address is:

Trinity Fields School, Caerphilly Road, Ystrad Mynach, Hengoed, CF82 7XW

A site location plan is presented in Figure 1.

2.2 Site Description

The site consists of the southern part of the Trinity Fields School, including the current car parking facility and external playing area, and extends onto the rugby pitch to the south. These two areas are divided by a hedgerow and fence line which mark the southern extent of the Trinity Fields school site.

The site is largely level with a mixture of ground cover including grass across the rugby pitch and areas of soft landscaping in the school site. The car park and access roads consist of hardstanding (asphalt).

The site is accessed via Caerphilly Road to the east of the site with secure gates marking the entrance to the school. The rugby pitch is surrounded by mental fencing, although the metal gates remain open to provide public access to the site and surrounding public amenity areas.

2.3 Summary of Site History

Earliest mapping from 1879 indicates that the site remained largely undeveloped until a sports ground was first recorded on mapping from the 1960s. Trinity Fields School is shown from historical mapping from 2006 onwards.

The surrounding site area generally comprises a residential setting with Penallta Rugby Football Club located immediately to the east of the site. It is understood that Penallta RFC use the rugby pitch on site as a training and playing facility.

2.4 Geology, Hydrogeology, Hydrology and Radon

2.4.1 Geology

Details of the geology underlying the site have been obtained from the following sources:

- British Geological Survey (BGS) Sheet No. 249 (Newport) Solid and Drift Edition, 1:50
 000;
- BGS website (British Geological Survey, 2018);
- BR211 Indicative Radon Mapping (Scivyer, 2015);
- Coal Authority Interactive Mapper (The Coal Authority, 2018); and
- Coal Mining Report (Reference 51002073807004) enclosed as within Appendix C of Trinity Fields Desk Top Study, WYG, May 2019.

Made Ground

The BGS does not record significant Made Ground deposits as being present onsite. However, Made Ground is anticipated in the north associated with the current school development. Furthermore, limited reworked material may be present beneath the sports pitch associated with any cut and fill activities associated with the levelling of the pitch and the installation of a drainage network across the site.

Superficial Geology

Geological mapping indicates that the site is underlain by Glaciofluvial deposits in the north of the site and Alluvial deposits in the south. Glaciofluvial deposits typically comprise sand and gravel and Alluvium is typically comprised of clay, silt, sand and gravel.

Solid Geology

The BGS Geoindex indicates the site is underlain by the Hughes Member, which forms part of the 'Upper Pennant Measures' of the Pennant Sandstone Formation. The member is c.305 million years old, deposited during the Carboniferous period. The lithology of the Hughes Member is described as green-grey lithic arenites interbedded with thin mudstone/siltstone sequences and

seatearths and predominantly thin coals.

A geological fault with unknown displacement is shown to run north west – south west through the southern portion of the site.

2.4.2 Hydrogeology

The Hughes Member (sandstone bedrock) and superficial deposits are designated as Secondary A Aquifers. These are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers. As such, the bedrock is categorised as a Secondary Aquifer with high groundwater vulnerability.

2.4.3 Hydrology

The nearest surface water feature is an unnamed river located 15m to the south within the Rhymney catchment. The Nant Cylla river is located 69m to the north-east which discharges into the River Rhymney located 70m to the east.

2.4.4 Radon

The BRE document 211 (Scivyer, 2015) mapping coverage for the site area was consulted and indicates that the site is located within an area where no radon protection measures are required for new developments.

2.4.5 Coal Mining

Whilst the site is located within a coal mining reporting area, the shallowest recorded worked coal seam is 480m below ground level. Additionally, the site is outside of a development high risk area and not within an area of past or probable shallow coal mine workings. Furthermore, the site is not deemed at risk from historically identified coal mining.

3.0 SITE INVESTIGATION

The site investigation was undertaken from 2nd to 9th June 2020. In total, three return monitoring visits were undertaken between 17th and 30th June 2020 following the completion of the ground investigation.

Details of the fieldwork methods are given in the notes section at the end of this report.

3.1 Scope

The ground investigation was designed to provide an overall assessment of ground conditions. The scope of the site investigation included the following:

- Ground Penetrating Radar (GPR) survey to clear exploratory locations of buried services;
- Ten window sample boreholes (designated WS01 to WS10) to a maximum depth of 5.00m bgl with Standard Penetration Tests (SPTs) conducted at 1m intervals throughout the full depth of the holes. Upon shallow refusal of the windowless sampler, dynamic probing was progressed to scheduled depths;
- Five cable percussion boreholes undertaken to refusal with SPTs through superficial deposits;
- Two machine excavated trial pits (designated SA01 and SA02) in which soil infiltration testing was undertaken between 1.60 to 2.70mbgl within superficial deposits;
- Seven in situ CBR tests using TRL-DCP method;
- Installation of 5 no. ground gas and groundwater monitoring wells;
- On-site inspection and logging of recovered samples;
- Representative soil samples taken and submitted for geotechnical classification testing;
- Representative soil samples taken, submitted and tested for a suite of potential contaminants; and
- Three return visits to monitor ground gas and groundwater levels, with one round of groundwater sampling.

Figure 2 shows the layout of the exploratory holes advanced during the site investigation. Exploratory hole logs including photographic plates are presented in Appendix B.

4.0 GROUND CONDITIONS ENCOUNTERED

4.1 Strata Encountered

The sequence of strata encountered beneath the site generally comprised;

- Grass over Topsoil;
- Made Ground;
- · Glaciofluvial deposits; and
- Hughes Member (inferred).

A summary of each stratum depth is provided in the table below, with descriptions of each stratum detailed in the subsequent sections. Exploratory hole logs including photographic plates can also be seen in Appendix B.

Table 1 – Summary of Ground Conditions Encountered

	Depth to base of strata (m bgl)			
Location	Topsoil	Made Ground	Glaciofluvial Deposits	Hughes Member
BH01	GL - 0.15	0.15 - 1.20	1.20 - 3.10	3.10 - 3.30*
BH02	GL - 0.15	0.15 - 1.20	1.20 - 4.00	4.00 - 4.45*
BH03	GL - 0.15	0.15 - 0.80	0.80 - 4.60	4.60 - 4.65*
BH04	GL - 0.15	ne	0.15 - 3.00	3.00 - 3.20*
BH05	GL - 0.15	ne	0.15 - 4.30*	
BH05a	GL - 0.15	ne	0.15 - 4.20	4.20 - 4.40*
WS01	GL - 0.15	0.15 - 1.20	1.20 - 2.0*	
WS02	GL - 0.15	ne	0.15 - 1.10*	
WS03	GL - 0.15	ne	0.15 - 2.90*	
WS04	GL - 0.15	0.15 - 1.60	1.60 - 2.0*	
WS05	GL - 0.15	ne	0.15 - 1.60*	
WS06	GL - 0.15	ne	0.15 - 1.70*	
WS07	GL - 0.15	ne	0.15 - 1.50*	
WS08	GL - 0.15	ne	0.15 - 2.05*	
WS09	GL - 0.15	ne	0.15 - 1.70*	
WS10	GL - 0.15	ne	0.15 - 1.10*	
SA01	GL - 0.15	ne	0.15 - 2.60*	
SA02	GL - 0.15	ne	0.15 - 2.80*	

GL - Ground Level

4.1.1 Topsoil

All locations were located within soft cover. As such, topsoil was encountered in all exploratory

NE - Not encountered

^{* -} Base of strata not proven

locations, with a recorded thickness of 0.15m across the site. The topsoil was comprised of grass over slightly sandy gravelly clay or silt with frequent rootlets.

4.1.2 Made Ground

Made Ground was identified within five exploratory locations, located to the south of the existing school building, but north of the sports pitch. Made Ground was recorded to a maximum depth of 1.60mbgl in WS04.

The Made Ground was largely consistent where present, comprising reworked silty or clayey sandy gravel or gravelly sand with rare fragments fine of brick, plastic, slag or concrete.

Although no fragments of anthropogenic material were observed in BH02, the Made Ground comprised slightly gravelly well sorted fine to medium sand, which was not observed elsewhere onsite.

4.1.3 Glaciofluvial Deposits

Glacifluvial deposits were encountered in all exploratory locations, to a maximum depth of 4.60mbgl in BH03. Deposits were variable across the site, but largely comprised of greyish brown to orange brown slightly silty and/ or clayey sandy gravel, with frequent cobbles and occasional boulders. Gravel, cobbles and boulders comprised of rounded to sub rounded grey medium coarse sandstone.

A number of exploratory locations also recorded a limited thickness of clay and/or silt at varying depths, from a minimum of 0.70mbgl and maximum of 4.0mbgl. These locations were BH04, BH05, WS01, WS03, WS06, WS08 and WS10. Thicknesses of clay with limited sand or gravel were encountered in SA01 and SA02 between 1.20–1.90mbgl and 2.20–2.80mbgl respectively.

4.1.4 Hughes Member

Strata associated with the Hughes Member was identified within BH01–BH04 and BH05A, with arisings returning as grey medium coarse grained angular to tabular coarse-grained gravel or cobble sized fragments. Bedrock was encountered between 3.00mbgl and 4.60mbgl, as indicated by refusal of the CPT tests in the boreholes.

4.2 Obstructions

BH05 was the first borehole advanced on the site and was relocated due to shallow refusal at 4.30m bgl. Further drilling across the site indicated this was likely to represent the presence of shallow bedrock and not an obstruction.

It should be noted that the rugby pitch is crossed by a network of drainage channels placed in a herringbone pattern. These are evident on site due to markings within the grass cover and extend across the entire playing area.

4.3 Groundwater

A groundwater seepage was encountered in BH03 at the base of the borehole (4.60mbgl). The water level rose to 3.7mbgl after 20 minutes. No other groundwater strikes were observed in the other exploratory locations.

4.4 In Situ Testing

4.4.1 Standard Penetration Testing and Dynamic Probes

Standard Penetration Tests (SPTs) were undertaken within all five cable percussion boreholes at approximately 1m intervals (where possible) through the superficial deposits. An SPT was also undertaken at the base of each exploratory following refusal.

SPTS were also undertaken in each of the window sample positions at approximately 1.0m intervals, as well as at the base of each window sample borehole following shallow refusal. Dynamic probes were undertaken at the base of the window sample locations until refusal.

The results are presented in the exploratory hole logs included in Appendix B.

4.4.2 TRL Probe Testing

TRL probes were undertaken at seven locations (TRL01-TRL07). The results are presented in Appendix C and summarised in the table below.

Table 2 – Summary of TRL Probe Results

Location	Depth Range (m bgl)	CBR (%)
TRL01	0.035-0.16-	16.5
IRLUI	0.16-0.24	40
	0.03-0.145	14
TRL02	0.145-0.19	47
	0.19-0.23	113
TRL03	0.03-0.15	22
TREUS	0.15-0.19	73
	0.04-0.155	20
TRL04 (WS06)	0.155-0.275	52
	0.275-0.45	118
TRI OF (MCOO)	0.04-0.18	16
TRL05 (WS09)	0.18-0.38	84
TRL06	0.03-0.1	25

Location	Depth Range (m bgl)	CBR (%)
	0.1-0.18	45
	0.18-0.205	117
TDL 07 (WC10)	0.04-0.125	27
TRL07 (WS10)	0.125-0.205	85

4.4.3 Soil Infiltration Testing

Three repeat infiltration tests were undertaken in SA01 and SA02. The tests were undertaken within superficial deposits comprising predominantly sands and gravels. The results of these tests can be found in Appendix D and are summarised in Section 7.0.

All tests were run for a total of 24 hours. However, fills no. 2 and 3 for SA01 did not drain within the specified time period. Extrapolation has not been used to calculate these permeabilities. The results are summarised in the table below.

Table 3 - Summary of Soil Infiltration Testing

Location	Depth	Strata	Hydraulic Conductivity (m/sec)		
	(mbgl)		Test 1	Test 2	Test 3
SA01	1.59 – 2.60	Glaciofluvial	4.08x10 ⁻⁶	-	-
SA02	2.08 - 2.70	Glaciofluvial	2.28x10 ⁻⁴	1.29x10 ⁻⁴	1.12x10 ⁻⁴

4.5 Visual or Olfactory Evidence of Contamination

During the site investigation no significant visual or olfactory signs of contamination were identified.

5.0 LABORATORY TESTING

5.1 Geotechnical Testing

A programme of laboratory testing was carried out on samples taken from the various strata encountered during the site investigation. Geotechnical testing was scheduled by WYG and carried out by GSTL Ltd, an approved supplier in accordance with the requirements of WYG quality system and UKAS accredited for a range of geotechnical tests. The test procedures used were generally in accordance with the methods described in BS1377:1990. Details of the specific tests used in each case are given in Table 4. Laboratory geotechnical test results are given in Appendix E.

Table 4 - Summary of Geotechnical Testing

Test	No.	Test Method
Moisture Content	13	BS1377:1990 Part 2:3.2
4 Point Liquid & Plastic Limit	13	BS1377:1990
+ Forme Liquid & Flastic Limit	13	Part 2:4.3&5.3
PSD: Wet Sieve method	17	BS1377:1990 Part 2:9.2
PSD: Sedimentation by Pipette	5	BS1377:1990 Part 2:9.4
Dry Den/MC (2.5kg Rammer Method 1	4	BS1377:1990 Part 4 3.3
Litre Mould)	7	
BRE Suite B Brownfield Site (pyrite		BRE - BR279
present): pH, water and acid soluble	12	
sulphate, and total sulphur		
BRE Suite D Brownfield Site (pyrite		BRE – BR279
present): pH, water and acid soluble	1	
sulphate, total sulphur magnesium,	1	
chloride and nitrate		

5.2 Environmental Testing

Environmental chemistry was investigated by specialist chemical analysis of selected soil samples carried out by ALS Environmental Laboratories, an approved supplier in accordance with the requirements of WYG quality system and UKAS and MCERTS accredited for a range of chemical analyses. The testing was scheduled by WYG and is summarised in Table 5 for soil samples. The test results are included in Appendix F.

Table 5 - Summary of Environmental Testing

Test suite	No.
Soil Samples:	
WYG Suite C	
 Heavy metals including Chromium (Hexavalent), Boron (water soluble), Arsenic, Beryllium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Vanadium and Zinc; 	
 Inorganics – including pH, Water soluble Sulphate as SO₄ (2:1 Extract), Cyanide (Easily liberatable- low level); 	8
 Speciated Petroleum Hydrocarbons (TPH CWG); 	
 Speciated Polyaromatic Hydrocarbons (USEPA 16); 	
BTEX and MTBE;	
Asbestos Screen; and,	
Phenol.	
Asbestos Screening	
Soil Derived Leachate Samples and Groundwater Suites	
WYG Leachate Suite C	
 Heavy metals including Antimony, Boron, Arsenic, Beryllium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium and Zinc; 	
 Inorganics – including pH, Sulphate, Chloride, Nitrite, Nitrate, Total Cyanide, Ammoniacal Nitrogen and NH₃ and NH₄ and Total Alkalinity 	4 leachate 2 groundwater
 Speciated Petroleum Hydrocarbons (TPH CWG); 	
 Speciated Polyaromatic Hydrocarbons (USEPA 16); 	
BTEX and MTBE;	
Phenol.	

6.0 GROUNDWATER AND GAS MONITORING

6.1 Groundwater Monitoring

Groundwater levels were monitored on 3 occasions following the completion of the ground investigation, between 17th June 2020 and 30th June 2020. The monitoring data is presented in Appendix G and summarised in Table 6 below.

Table 6- Summary of groundwater levels

Location	Base of borehole	Depth to water (m bgl)				
Location	(m bgl)*	17/06/20	23/06/20	30/06/20		
BH03	4.44	3.60	2.80	2.69		
BH04	3.17	2.55	2.11	2.12		
WS01	1.96	DRY	1.85	1.86		
WS02	0.95	DRY	DRY	DRY		
WS10	0.77	DRY	DRY	0.77		

^{*} Base of boreholes silted between visits. Depth included as depth measured on final visit

6.2 Ground Gas Monitoring

Ground gas levels were monitored on 3 no. occasions following the completion of the ground investigation, between 17^{th} June 2020 and 30^{th} June 2020. The monitoring data is presented in Appendix G and in Table 7 below.

Table 7 - Summary of phase 1 Ground Gas monitoring

Location	Max. Methane (peak) (% vol)	Max. Carbon Dioxide (peak) (% vol)	Min. Oxygen (steady) (% vol)	Max. Carbon Monoxide (steady) (ppm)	Max. Hydrogen Sulphide (steady) (ppm)	Max. Borehole flow (peak) (I/h)
BH03	0.3	1.1	18.1	1	<1	0.3
BH04	0.2	0.6	18.2	3	<1	0.2
WS01	0.2	0.8	19.0	9	1	0.2
WS02	0.3	3.9	17.7	1	<1	0.2
WS10	0.3	3.8	14.5	5	<1	0.3

The results indicate measurable concentrations of carbon dioxide (maximum of 3.9%/vol) and methane (maximum 0.3%/vol).

The maximum gas flow recorded across the monitoring rounds was a flow of 0.3l/hr within BH03, WS02 and WS10.

In addition, the ground gas monitoring results indicate hydrogen sulphide concentrations of 1 ppm during the second monitoring visit. However, all other locations across all monitoring visits have a hydrogen sulphide concentration of <1ppm.

A maximum concentration of carbon monoxide of 9 ppm was recorded within WS01 during the second visit. Carbon monoxide concentrations were generally between 1-3ppm across the site across the monitoring visits.

A review of atmospheric pressure data indicates that monitoring visits were undertaken in atmospheric pressures ranging from 995 mb to 1016 mb. A review of atmospheric pressure graphs on weatheronline.co.uk indicates that all monitoring rounds were undertaken during a period of falling atmospheric pressure.

7.0 SOIL INFILTRATION TESTING

7.1 Background

On 7th January 2019, the Welsh Government introduced Schedule 3 of the Flood and Water Management Act 2010 which requires new developments to consider the feasibility of Sustainable Drainage Systems (SuDS) at the design stage. New developments over 100m² or including more than one property must obtain approval of the drainage system from the SuDS Approval Body (SAB) prior to the commencement of construction.

To support the assessment study, preliminary soil infiltration testing has been undertaken as part of the site investigation to provide information on the potential infiltration rates within the sub-strata on the site.

Soil infiltration tests have been undertaken in line with BRE 365 (2016) methodology and any deviations from this approach are documented within the following section. Where possible, locations and depths of test pits were determined based on the proposed drainage design.

7.2 Test Locations

As indicated in the description, the majority of the site comprises of soft scaping. However, in order to minimise any potential damage and disruption to both the school and playing fields, soakaway testing was undertaken along the western edge of the playing fields and not within the school grounds.

The location of infiltration testing is included in Figure 1.

7.3 Soil Infiltration Tests

Three soil infiltration tests were undertaken in each of the two machine excavated trial pits as summarised in the following table.

Table 8 Summary of Soil Infiltration Test Locations

Test Location	Depth to Base (m bgl)	Top of Target Strata (m bgl)	Target strata
SA01	2.60	1.59	Glaciofluvial deposits
SA02	2.70	2.08	Glaciofluvial deposits

Three repeat fills were undertaken within the test location over a period of 3 days, with each individual test run until the water level had passed the 25% of fill level, or for a maximum of 24

hours.

Test locations were securely fenced and covered until the testing period was completed and excavations backfilled on completion.

The results of the soil infiltration tests are presented in the following table. Full test results are included in Appendix D of this report. Note that test 2 and 3 within SA01 were not compliant tests and therefore permeabilities have not been calculated.

Table 9 Summary of Soil Infiltration Test Results

Test Location	Soil Infiltration Rate (m/s)				
	Test 1	Test 2	Test 3		
SA01	4.08x10 ⁻⁶	-	-		
SA02	2.28x10 ⁻⁴	1.29x10 ⁻⁴	1.12x10 ⁻⁴		

7.4 Ground Conditions

7.4.1 Depth to groundwater

Both excavations were terminated within the glaciofluvial deposits. No groundwater was present during the excavation. Based on the groundwater seepage within in BH03 at the base of the borehole (4.60mbgl), groundwater is estimated to be over 1m below the base of the pits.

7.4.2 Strata Type

The targeted strata for the conducted infiltration testing was the sands and gravels of the glaciofluvial deposits.

7.4.3 Ground Contamination

Significant ground contamination has not been identified as part of the ground investigation, a contamination assessment is presented in Sections 10.0 and 11.0.

7.5 Constraints and Limitations

The information presented above is intended to assess the feasibility of soakaway drainage in order to support the development of the drainage strategy. Further testing, groundwater monitoring and ground investigation may be required to support a full SAB application or to inform the development of the final design process.

Ground conditions can vary throughout the year, including the location of the groundwater table. Consideration should be given to the potential effects of seasonal variation when reviewing the data above.

8.0 GEOTECHNICAL ASSESSMENT

8.1 Ground Conditions

The soils beneath the site are characterised by a thin mantle of coarse-grained Made Ground over coarse-grained medium dense to very dense Glaciofluvial Deposits.

8.2 Soil Properties

The ranges of the various soil properties measured are discussed below, to aid in the selection of design values. However, the appropriate choice of characteristic and design values will depend on the particular analysis and design philosophy used and should be selected by the designer.

Where characteristic values are given, these are reasonably conservative estimates of a measured or assessed property that may be used to represent the overall behaviour of the material. Design values are similar but also take into account the ground-structure interaction for a given structure so need to be selected by the designer. It is recommended, however, that design values used do not exceed the characteristic values given in this report.

8.2.1 Glaciofluvial Deposits

Shallow generally coarse-grained deposits were identified within all positions immediately below the Made Ground/topsoil. A summary is presented in the table below.

Table 10 - Summary of test results within the coarse-grained alluvial deposits

	No. of results	Range (min-max)	Average	Lower quartile	Upper quartile	Charact- eristic value ⁺
SPT N Values	33	6 – 50	29	14	47	14
Angle of shearing resistance φ*	33	28 – 41	36	31	40	31

Notes:

Based on the above, it is recommended that the following values are taken as design/characteristic values for this material:

SPT N Value 14

Angle of shearing resistance, φ
 31°

⁺ suggested characteristic values are appropriate for most normal applications but designers should satisfy themselves that they are suitable for the specific application and design method they are using;

^{*} Estimated from a correlation from Peck, Hansen and Thornburn, Foundation Engineering, Wiley, 2nd ed., (1974)⁽⁶⁾

9.0 GEOTECHNICAL DESIGN CONSIDERATIONS

9.1 Proposed Development

The proposed development plan is presented at the end of this report and comprises a single storey extension to the existing school building.

9.2 Earthworks

Given the current levels of the site, significant earthworks (cut and fill) is not anticipated at this stage.

The soils are predominantly granular comprising brown silty sandy fine to coarse gravel. Four compaction tests were undertaken on representative samples of these soils. Maximum dry densities ranging between 1.56 and 1.95mg/m³ were recorded at optimum moisture contents of 7 to 12%. Existing moisture contents were recorded of between 10 to 26%. This would indicate that soils should achieve 95% compaction with minor pre-treatment or processing (Drying).

9.3 Foundations

Within the area of the proposed building topsoil was encountered overlying shallow coarsegrained Made Ground over medium dense to very dense coarse-grained Glaciofluvial deposits.

Based on the above ground conditions it is considered that shallow spread foundations, strip or pads, placed within the shallow coarse-grained deposits, at a minimum depth of 0.85m bgl, would be a suitable foundation option for the proposed extension. Shallow footings may be design to an allowable net bearing pressure of 200kPa, giving a factor of safety greater than 3 against ultimate bearing capacity failure, and should result in settlement less that 25mm for a strip footing of no greater than 0.7m wide or a pad of no more than $2m^2$.

Foundation excavations should be inspected by a suitably experienced engineer or inspector to ensure the founding material is suitable natural deposits. Any soft, loose or otherwise unsuitable material should be excavated and replaced by compacted granular backfill or lean concrete.

9.4 Floor Slabs

Floor slabs may be ground bearing to combined dead and live loads of 20kNm². Any topsoil should be stripped and localised made ground excavated and replaced with compacted granular

fill. The formation should be proof rolled and inspected by a suitably qualified engineer. Any material such as soft clay, deleterious material containing weak or degradable contaminants, or other unsuitable material, should be excavated and replaced by well-compacted granular fill.

9.5 Chemical Attack on Buried Concrete

Chemical tests undertaken on representative samples show low levels of water-soluble sulphates and generally near neutral conditions. Based on these conditions, it is recommended that for foundations the Design Sulphate Class for the site, as defined in BRE Special Digest 1, be taken as DS-1, and the Aggressive Chemical Environment for Concrete (ACEC) site classification be taken as AC-1.

9.6 Pavements

CBR values ranged between 16% to >100% and reflect the granular nature of the near surface soils. For pavement design, a conservative value of 5% is recommended. Due to the nature of the deposits, the subgrade should be inspected during construction to identify any loose, soft or other unsuitable material should be removed and replaced with suitable compacted backfill.

9.7 Temporary Works

Excavated pits generally remained open and stable during the investigation and it is considered that most shallow excavation for foundations and service runs should remain stable in the short term. However, where soft or variable materials are encountered some collapse may occur requiring localised support of battering of the excavation. All excavations requiring man entry should be fully supported to prevent unexpected collapse.

Shallow groundwater was not encountered during the investigation. It is therefore unlikely that groundwater will be encountered within shallow excavations, although it should be noted that groundwater levels can vary seasonally.

9.8 Drainage

Soakaway testing within the shallow Glaciofluvial deposits within SA01 has yielded soil infiltration values of the magnitude $<10^{-6}$ m/s with three tests undertaken indicating low permeability and poor drainage conditions. Soakaway testing within SA02 yielded soil infiltration values of the magnitude 10^{-4} m/s with three tests undertaken, indicating medium permeability with good drainage conditions. Therefore, soakaways would be a viable option within the vicinity of SA02.

10.0 GROUND CONTAMINATION ASSESSMENT – HUMAN HEALTH

10.1 Introduction

The UK Contaminated Land Regime (CLR) allows for a tiered approach to the assessment of ground contamination which is designed to allow increasingly site-specific assessment. In order to assess the potential risk posed by contaminants contained within the soils at the study area a generic quantitative risk assessment (gQRA) has been undertaken by comparing recorded concentrations of chemical constituents in soil with Generic Assessment Criteria (GAC) to identify whether, at the concentrations recorded, the presence of the constituent has the potential to adversely affect the health of site users (a Tier 1 assessment). GAC are set at levels where potential exposure is deemed to be within acceptable limits.

If the recorded concentrations of a particular constituent are below the GAC then the risk is generally considered to be acceptable and further assessment / or mitigation measures are not required. Where a substance is recorded at concentrations higher than GAC this does not necessarily indicate that a particular risk is present, however, it does typically signify the requirement to undertake further assessment in line with the UK tiered risk assessment framework.

10.2 Assessment Criteria

10.2.1 Generic Assessment Criteria

The following GAC for soils have been utilised for the screening process, in order of preference:

- CL:AIRE published C4SL (DEFRA, 2014);
- CIEH/LQM published S4UL (LQM/CIEH, 2015);
- WYG internal Tier 1 Screening Criteria (issue 15) derived using the derivation tool CLEA version 1.06, in line with the current UK Contaminated Land Regime.

C4SL are currently available for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead¹. The C4SL were originally developed to support the categorisation of sites in accordance with Part 2A are also, based on DEFRA guidance, considered suitable for use during the

.

¹ Arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI, lead assuming 6% SOM (1% SOM C4SL also published for benzene).

assessment of sites as part of the planning process.

Where C4SLs are not available, 'Suitable for Use Levels' (S4UL) developed by CIEH/LQM have been used. The S4UL provide GAC based on minimal or tolerable risk intended to be protective of human health for individual or mixtures of substances. It is considered conservative and appropriate to use these values for contaminants for which C4SL are unavailable. GAC for volatile and semi-volatile organic compounds (VOC and SVOC) not presented in the S4UL document are sourced from CL:AIRE (CL:AIRE, January 2010).

Where no published screening values are available WYG have derived their own values (easily liberatable cyanide).

The CLEA model states that "For most exposure pathways, the contamination is assumed to be at or within one metre of the surface" (Environment Agency, 2009). It is considered that at depths greater than 1.0m, the probability of human exposure via the direct contact pathways are significantly reduced, leaving inhalation of volatile compounds as the dominant pathway with regard to human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway. The same screening concentrations have been used for all depths at this stage, though it is noted that these are highly conservative for depths below 1.00m bgl.

10.2.2 Proposed End Use

Screening criteria have been developed for the following land use scenarios:

- · Residential with plant uptake;
- Residential without plant uptake;
- · Allotments;
- Public open space (park and residential);
- Commercial / Industrial.

The proposed development on site will consist of a single storey extension to the existing front two canopies, encompassing the current playground, to form a courtyard. Additional play areas, school allotment and car parking are proposed to the south of the proposed extension. As such the following screening assessment has been undertaken against a Public Open Space (POS) assessment criteria to provide a conservative assessment. However, residential without plant uptake end use scenario has also been applied for reference.

10.2.3 Soil Organic Matter

For organic contaminants, the generic soil screening values have been derived for a range of concentrations of soil organic matter (1%, 2.5%, 6%). In order to provide a conservative assessment, the GAC derived for a 1% SOM have been adopted.

10.3 Tier 1 – Soil Screening

A total of 8 no. soil samples collected from across the site were submitted for chemical laboratory analysis. Full copies of laboratory certificates for all soil analysis are included in Appendix F.

Comparison of the chemical analysis results with the generic assessment criteria for Public Open Space (POS) residential RSSV indicates that there are no exceedances against the applied Soil Screening Values (SSV).

10.4 Asbestos

The eight soil samples submitted for laboratory analysis were also submitted for asbestos screening. Asbestos was not identified in any of the samples submitted for testing.

11.0 GROUND CONTAMINATION ASSESSMENT – WIDER ENVIRONMENT

11.1 Introduction

The potential for contaminated groundwater on site to adversely affect controlled water receptors (groundwater and surface water bodies) has been assessed at this stage by direct comparison of analytical data from the WYG ground investigation with relevant Water Quality Standards (WQS).

Similarly, the potential for soil contamination to impact controlled waters has been assessed by comparing analytical data from soil derived leachate tests directly against WQS.

11.2 Assessment Criteria

In light of the environmental setting of the site under consideration. The following water quality standards (WQS) have been adopted, in order of preference.

- Water Framework Directive (WFD),
- Environmental Quality Standards (EQS);²
- WHO 2008 Petroleum Products in Drinking Water (WHO 2008)
- UK Drinking Water Standards³.

11.2.1 Bioavailability

For certain heavy metals (copper, zinc, manganese, nickel and lead) the bioavailability of the metal within the water can be calculated to generate a bespoke screening criteria based on other groundwater parameters. This assessment is undertaken utilising the Metal Bioavailability Assessment Tool (M-BAT) which was developed using the EQS_(bioavailable) developed in line with the Water Framework Directive.

In the case of copper, zinc, manganese and nickel the assessment takes into account the concentration of calcium, Dissolved Organic Carbon (DOC) and pH of the water sample. The assessment for lead only takes the DOC of the sample into account. A spreadsheet has been developed for the assessment by the UK Technical Advisory Group on the Water Framework

² Where WFD 2015 are not presented revoked WFD 2010 standards are used

³ WHO 2005; WHO 2008; UK Water Supply Regulations 2010 and 1989 Regulations. Priority given to UK drinking water standards

Directive.

11.3 Soil Derived Leachate Methodology

Soil derived leachate samples can be used to identify potentially mobile contamination within soil samples collected from the site. It should be noted that the laboratory test methodology indicates a potential mobility of contaminants and is usually considered to reflect a worst-case situation and unlikely to represent on-site conditions.

The laboratory preparation of leachate samples is likely to produce higher concentrations of leachable components than conditions encountered on site and as such the following assessment is considered to be inherently conservative in nature. Furthermore, the resulting data are screened against criteria intended to be protective of water bodies and drinking water supplies and are not intended to assess the potential significance of contaminant mobility.

11.4 Tier 1 Screening Assessment – Soil Derived Leachate

Four soil derived leachate samples were screened against a suite of determinants outlined in Section 11.2.

The following table summarises the determinants which have been identified at concentrations in excess of the adopted screening value.

Table 11 - Summary of Exceedances within Soil Derived Leachate Samples

Determinant	Units	Maximum	Minimum	Screening	Exceedances		
Determinant	Units	Maximum	Maximum Millinum		No.	Location (mbgl)	
		0.00252				BH01 0.20 - 0.80	
Copper	mg/l	0.00353	0.001	0.001*	3	SA01 0.20 - 0.30	
						WS02 0.45 - 0.70	
Lead	mg/l	0.00314	<0.0002	0.0012*	1	SA01 0.20 - 0.30	
Zinc	mg/l	0.0344	0.00522	0.012*	1	SA01 0.20 - 0.30	
Fluoranthene	mg/l	0.0000277	<0.000005	0.0000063*	1	BH01 0.20 - 0.80	
	J, .				_	SA01 0.20 - 0.30	

^{*} Freshwater waters EQS 2015

A total of 4 no. determinants, comprising of 3no. metals and 1 no. PAHs, were identified within soil derived leachate samples at concentrations in excess of the adopted screening criteria.

Concentrations of copper, zinc and lead can be considered within the context of the

bioavailability of the heavy metal based on other soil parameters. The M-BAT tool has been used to calculate site specific screening criteria for these determinants, with the results presented in the table below.

However, it is worth noting the following assumptions in accordance with M- BAT guidance⁴:

- The calcium content has been estimated as a percentage (40%) of the total alkalinity CaCO₃;
- The pH for BH01 (8.02) exceeded the operational range for the M-BAT tool with respect to zinc. Therefore, the pH was set at 8;
- The calcium content for SA01 (calculated as 2.6mg/l) is below the operational range of the M-BAT tool for Copper, which requires a concentration of 3.0 93mg/l. As such, the calcium concentration has been set at 3mg/l.
- The DOC for SA01 (51.10mg/l) exceeds the maximum value for the operational range applied within the Lead Screening Tool, which is 20 mg/l. As such, DOC was set at 20mg/l for SA01.

Table 12 - M-BAT adjusted Screening Values for Heavy Metals - Soil Derived Leachate

Determinant	Sample	Concentration (µg/l)	Screening Value (µg/l)	M-BAT Screening Value (µg/l)	Exceedances
	BH01 0.20 - 0.80mbgl	2.94		15.65	0
Copper	SA01 0.20 - 0.30mbgl	2.73	1	22.06	0
	WS02 0.45 - 0.70mbgl	3.53		16.48	0
Zinc	SA01 0.20 - 0.30mbgl	34.4	10.9	24.47	1
Lead	SA01 0.20 - 0.30mbgl	3.14	1.2	24.00	0

As presented in the table above, when bioavailability is taken into consideration the concentrations of copper and lead are below the adjusted screening criteria and consequently are not considered to pose a risk to the wider environment. However, the concentration of zinc is shown to pose a potential risk and is considered further within the risk assessment in Section 14.0.

In addition, he recorded exceedances WQS of some PAHs are considered further within the risk assessment. However, as stated previously, it is worth noting that leachate concentrations are highly conservative and represent a worst case scenario in the natural environment.

⁴ Water Framework Directive – United Kingdom Advisory Group (WFD-UKTAG). 2014. *UKTAG River & Lake Assessment Method Specific Pollutants (Metals) Metal Bioavailability Assessment Tool (M-BAT)*. Stirling, Scotland. ISBN: 978-1-906934-57-6.

11.5 Tier 1 Screening Assessment – Groundwater

One groundwater sample was obtained from the on the site and analysed for the suite of determinants outlined in Section 5.2. The results were screened against a suite of determinants outlined in Section 11.2.

The following table summarises the determinants which have been identified at concentrations in excess of the relevant WQS screening criteria.

Table 13 - Summary of Exceedances within Groundwater Samples

Determinant	Unito	Concentration	Screening	Exceedances		
Determinant	Units	Concentration	Value	No.	Location	
Copper	μg/l	4.8	1	1	BH04	
Fluoranthene (aq)	μg/l	0.0124	0.0063	2	BH03	
riuoranichene (aq)	μg/i	0.0469	0.0003		BH04	
Benzo(b)fluoranthene (aq)	μg/l	0.0354	0.017	1	BH04	
Benzo(a)pyrene (aq)	μg/l	0.00485	0.00485 0.00017		BH03	
Delizo(a)pyrelie (aq)		0.023	0.00017	2	BH04	

Copper can be considered within the context of the bioavailability of the heavy metal based on other soil parameters using the M-BAT tool as stated above. As such the updated bioavailable concentration for copper has been updated in Table 14.

It should be noted that the Calcium content was set to the maximum operational range as in Section 11.4.

Table 14 - M-BAT adjusted Screening Values for Heavy Metals - Groundwater

Determinant	Sample	Concentration (μg/l)	Screening Value (µg/l)	M-BAT Screening Value (µg/l)	Exceedances
Copper	BH04	4.8	1	7.84	0

As presented in the table above, when bioavailability is taken into consideration the concentration of copper is below the adjusted screening criteria. As such, copper is not considered further.

The groundwater analysis indicates Copper, Fluoranthene, Benzo(b)fluoranthene and Benzo(a)pyrene have been identified at concentrations in excess of the relevant screening criteria. The exceedances of PAHs are considered further within the risk assessment presented in in Section 13.0.

12.0 PRELIMINARY GROUND GAS ASSESSMENT

12.1 Introduction

Three return ground gas monitoring visits were undertaken between the 17th June 2020 and 30th June 2020. Full factual site records of the gas monitoring results are presented in Appendix G and summarised in Section 0.

12.1.1 Ground Gas Monitoring

Ground gases are monitored within boreholes on the site recording the following parameters.

- · Concentrations of ground gases;
 - Methane (%v/v);
 - Carbon dioxide (%v/v);
 - Oxygen (%v/v);
 - Carbon monoxide (ppm);
 - Hydrogen sulphide (ppm);
- Borehole flow rate (I/hr);
- Depth to groundwater;
- Atmospheric pressure trends;

Where groundwater levels are noted to be above the screened sections of the boreholes the data is not considered to be representative of the ground gas regime and are therefore not used within the risk assessment process.

Atmospheric pressure trends are recorded on site during the monitoring process, but are also noted in the preceding three days, and one day after each monitoring visit. Falls in atmospheric pressure are generally considered to indicate a higher potential for ground gas migration from the sub surface and as such monitoring during periods of falling pressure are considered to represent worst case scenarios as outlined in the CL:AIRE Technical Bulletin TB17 (CL:AIRE, August 2018).

12.1.2 Land Gas Risk Assessment Methodology

The key reference document which has been used to undertake the semi-quantitative land gas assessment presented in this report is CIRIA C665 (CIRIA, 2007). This provides a framework for assessment of land gas risk to buildings/structures with foundations (i.e. houses and/or

commercial properties).

The risk assessment process is based on a Source-Pathway-Receptor Conceptual Site Model Methodology, with consideration given to the potential sources likely to be present on the site and the ground gas monitoring regime designed to reflect the scale of the source potential.

The collected data has been used for the purposes of undertaking a semi-quantitative assessment in accordance with the CIRIA 665 methodology. The calculation used to calculate the gas screening value (GSV) for the site, together with the relevant definition of units, is as follows:

GSV (litres of gas/hr) = borehole flow rate (l/hr) x gas concentration (volume/100)

The calculated GSV values are used to determine the Characteristic Situation (CS) for the site in terms of methane and carbon dioxide, based on the conditions outlined in Table 15 below.

CS classification is applicable to all buildings, with the exception of low-rise housing with a ventilated underfloor void, in these situations, the NHBC Traffic Light System is adopted, as outlined in Table 16.

Table 15 –GSV Classification (Modified Wilson and Card Methodology)

Characteristic Situation	Risk Classification	Gas Screening Value Threshold (I/hr)	Additional Considerations
1	Very Low Risk	<0.07	Methane concentration <1%
1	VCI y LOW KISK	\0.07	Carbon dioxide <5%
2	Low Risk	<0.7	Borehole flow rate <70 l/hr
3	Moderate Risk	<3.5	-
4	Moderate to High Risk	<15	Quantitative risk assessment required to evaluate scope of protective measures
5	High Risk	<70	-
6	Very High Risk	>70	-

Table 16 -NHBC Traffic Light Classification

	Met	thane	Carbon Dioxide					
Traffic Light	Typical maximum concentration (%v/v)	GSV (litres per hour)	Typical maximum concentration (%v/v)	GSV (litres per hour)				
Green	1	0.16	5	0.78				
Amber 1	1	0.10	3	0.70				
	5	0.63	10	1.56				
Amber 2	20	1.56	30	3.13				
Red								

It should be noted that the suggested threshold values lie between each traffic light boundary and therefore the wider conceptual model should be considered to provide a comprehensive assessment of the ground gas regime on the site before a classification can be attributed.

12.2 Preliminary Ground Gas Risk Assessment

12.2.1 Conceptual Site Model

The following sections outline the anticipated Source-Pathway- Receptor model associated with the proposed development on site.

Sources

The following potential sources have been identified on and off site.

Made Ground deposits noted to underlay the site; and

Pathways

The following potential pathways have been identified which may act as preferential pathways for ground gas migration:

- The underlying strata have been classified as sands and gravels with varying components of clays and silts. Therefore, there is potential for some horizontal and vertical migration of ground gas;
- Buried service runs and foundations, including sub-floor voids of current school building

and proposed extension.

Receptors

Within the context of ground gases, the following enclosed structures are considered to represent potential receptors.

- The existing structure on the site
- Structures and enclosed areas within proposed development.

12.2.2 Risk Assessment - Methane and Carbon Dioxide

In order to assess the significance of ground gases at the site, measured concentrations and flow rates have been used to derive Gas Screening Values (GSVs). GSVs are the product of gas concentration and gas flow measured in a borehole and provide an indication of the flow of the particular gas in question out of the ground.

As part of the conservative assessment, the worst-case values have been applied.

Based on a maximum flow recorded of 0.3l/hr and the maximum recorded concentration of carbon dioxide (CO₂) and methane (CH₄) during the three monitoring visits, the GSVs have been calculated as presented in Table 17.

Table 17 – Initial GSV Calculations

	Maximum Concentration (%vol)	oncentration Flow Rate GSV (I/hr)		Characteristic Situation (Wilson and Card)	NHBC Traffic Light
Carbon Dioxide	3.9	0.3	0.0117	1	Green
Methane	0.1	0.3	0.0003	1	Green

These values have been compared with the Revised Wilson and Card Classification presented in Table 15.

The risk assessment process indicates the site is representative of Characteristic Situation 1 (Very Low Risk) and Green within the NHBC Traffic Light System based on the recorded concentrations of carbon dioxide and methane and maximum flow rates within the sub surface.

12.2.3 Carbon Monoxide and Hydrogen Sulphide

Maximum concentrations of carbon monoxide and hydrogen sulphide were recorded at 9ppm and 1ppm respectively throughout the monitoring period. The recorded concentrations are

considered to be suitably low to negate the requirement for additional risk assessment.

12.2.4 Atmospheric Pressure Trends

A review of atmospheric pressure data and pressure trends indicates that monitoring visits were undertaken in atmospheric pressures ranging from 997mb - 1016 mb, and falling pressure. As such the recorded concentrations are deemed representative of ground conditions, including a worst-case scenario (falling, low pressure).

12.3 Summary and Discussion

The site has been classified as Characteristic Situation 1 (Very Low Risk) / Green based on the worst-case recorded concentrations of carbon dioxide and methane and maximum flow rates. Site classification of a Characteristic Situation 1 / Green indicates gas protection measures are not required within new developments.

13.0 CONCEPTUAL SITE MODEL AND GROUND CONTAMINATION RISK ASSESSMENT

13.1 Overview

The information presented in the previous sections of this report have been collated and evaluated to establish an initial qualitative risk assessment for the site. A conceptual model of the site has been generated based on information derived from the Phase 1 Geo-environmental Assessment and subsequent intrusive ground investigation and laboratory testing.

The site has been considered with regard to current UK legislation and guidance, namely Part 2A of the Environmental Protection Act 1990 and the Contaminated Land (England) Regulations 2006, as amended, and in accordance with current UK good practice guidelines (for example BS10175:2011).

In general, ground contamination can occur through several causes, particularly from historical operations and activities. Contamination can result from either on-site sources or from on-site migration from off-site sources, leading to long term liabilities under recent legislation for any site owner.

For a risk of pollution or environmental harm to occur as a result of ground contamination, all of the following elements must be present:

- Source, i.e. a substance that is capable of causing pollution or harm;
- Pathway, i.e. a route by which the contaminant can reach a target; and
- Receptor (target), i.e. something which could be adversely affected by the contaminant.

If one of these elements is absent there can be no significant risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

13.2 Current Site Usage and Proposed Development

The proposed development involves a proposed single-story extension to the existing school building. The end users will therefore remain unchanged from the current site users.

13.3 Conceptual Site Model

The key source, pathways and receptor model is outlined below within the context of potential development of the site.

Despite the predominance of hardstanding across the site in the proposed development, the following risk conservative assessment is undertaken in the context of POS Residential.

13.3.1 Potential Sources of Contamination

The main potential sources of contamination on the site are associated with existing features as well as historical land uses on the site as summarised below.

On site Sources

• Made Ground associated with former development on the site; and

Off site Sources

• Ground gas associated with infilled ground within 250m of the site (closest recorded area c.25m to the south).

13.3.2 Potential Contaminant Pathways

The following contaminant pathways are considered to potentially be active based on the current site use and proposed development:

Human Exposure Pathways

• Direct dermal contact or ingestion of soils, or inhalation of dust and/or vapours (i.e. human interaction with surface and sub-surface materials).

Environmental Pathways

- Leaching and horizontal or vertical migration through the unsaturated ground, either through permeable sub-surface materials and/or preferential pathways;
- Lateral and vertical migration of groundwater through permeable sub-surface materials and/ or preferential pathways;
- Leaching to surface water run-off/drainage;
- The migration and accumulation of gases or vapours through permeable sub-surface materials and/ or preferential pathways.

13.3.3 Potential Receptors at Risk

The following potential receptors have been identified:

Human Health

- Current site users (school children and staff);
- Future site users (school children and staff);
- Site workers during the redevelopment of the site;
- Adjacent site users (residential/ rugby club)

Wider Environment

- Secondary A Aquifer of glaciofluvial deposits and Hughes Member bedrock;
- Surface waters (stream c.15m to the south);
- Plant uptake;
- · Building Infrastructure and supply pipes; and
- Adjacent properties.

13.4 Ground Conditions Risk Assessment

The source, pathway, receptor linkages identified in the previous section are outlined and a qualitative risk assessment shown in the following tables.

The risk assessment considers the site within an area context and assesses potential risks to identified receptors in relation to the existing site setting and the proposed development. CIRIA C552 has been used to define the risk rating presented in the Qualitative Risk Assessment matrix, the methodology for which is presented in Appendix H.

Table 18- CIRIA C552 Qualitative Risk Assessment

Source	Pathway	Receptor	Consequence of risk being realised	Probability of risk being realised	Risk Classification	Potential risk management requirements
General contamination associated with Made Ground on site (PAHs and Zinc)		Current site users		Unlikely	Low Risk	The soil laboratory results of onsite soil
	Direct dermal contact or ingestion	Future site users Medium		Unlikely	Low Risk	samples has not indicated the presence of contaminants of concern in excess of their GAC (POS Residential). Therefore, the
		Construction workers		Unlikely	Low Risk	risk to human health is considered to be low.
		Groundwater (Secondary A Aquifer)		Unlikely	Low Risk	The laboratory results of the soil derived leachate and the groundwater testing indicated slightly elevated concentrations of some heavy metals and some PAH compounds against the EQS screening criteria. However, when considering the bioavailability of heavy metals, only Zinc exceeded EQS screening criteria in the leachate derived samples.
	Leaching and horizontal or vertical migration		Medium			Given ,the conservative nature of the leachate testing methodology, the recorded concentrations are not considered to pose a significant risk to controlled waters.
		Surface waters		Unlikely	Low Risk	In the context of groundwater, water sampling parameters indicate predominantly aerobic, optimal conditions. As such, minor exceedances in PAHs are deemed to present a low risk to groundwater. The nearest surface water body is c. 50m from the site, which

						negates the risk for any further assessment.	
Asbestos within Made Ground		Current and future site users	Medium	Unlikely	Low Risk	No ACMs were identified during the site investigation. However, the presence of ACMs within the Made Ground cannot be	
	Inhalation	Construction Workers	Medium	Low likelihood	Moderate to Low Risk	discounted. In the event that ACMs are encountered during the development process, further assessment will be required to provide an updated risk assessment process.	
Ground gas generation associated with Made Ground		Current and future site users	Medium	Likely	Low Risk	The results of the ground gas monitoring undertaken across the site indicates that the site is categorised as Characteristic	
	Inhalation of gases	Site construction	Medium	Likely	Low Risk	Situation 1 (low risk) under the Wilson and Card classification presented in CIRIA 665, and Green within the NHBC Traffic Light System.	
		workers				As such, gas protection measures are no required within new developments.	

14.0 CONCLUSIONS AND RECOMMENDATIONS

14.1 Ground Contamination

14.1.1 Summary

A thin thickness (<0.60m) of Made Ground was identified in some exploratory locations on site. The laboratory testing found tested contaminant concentrations did not exceed the screening criteria for a Public Open Space (POS) end use.

Asbestos containing materials have not been identified within the shallow soils on the site. However, the potential presence of asbestos containing materials within the Made Ground cannot be discounted. In the event that previously unidentified asbestos contamination is encountered during the development phase, works should stop to allow additional investigation and risk assessment to be undertaken and additional risk management procedures put in place, if required.

With respect to the risk to the wider environment, the results of the soils derived leachate testing indicated an exceedance of zinc and fluoranthene against their respective EQS values. In addition, the groundwater results show exceedances of a number of PAH compounds against their relevant EQS values. However, given the marginal nature of the exceedances noted and the conservative methodology of the leachate testing, the concentrations noted are considered to pose a low risk to the local environmental receptors.

The site is categorised as Characteristic Situation 1 (low risk) under the Wilson and Card classification presented in CIRIA 665, and Green within the NHBC Traffic Light System following the completion of Ground gas monitoring undertaken during variable pressure conditions. As such, gas protection measures are not required within new developments.

14.2 Geotechnical

Based on ground conditions it is considered that shallow spread foundations, strip or pads, placed within the shallow coarse-grained deposits Glaciofluvial Deposits, at a minimum depth of 0.85m bgl, would be a suitable foundation option. Shallow footings may be design to an allowable net bearing pressure of 200kPa, giving a factor of safety greater than 3 against ultimate bearing capacity failure, and should result in settlement less that 25mm for a strip footing of no greater than 0.7m wide or a pad of no more than 2m². Floor slabs may be ground bearing to combined dead and live loads of 20kNm², providing that topsoil should be stripped and localised made ground excavated and replaced with compacted granular fill.

Soakaway testing within the shallow coarse-grained Glaciofluvial deposits indicated low to medium permeability with good drainage conditions. Therefore, soakaways would be a viable option. However, further testing will need to be undertaken once the position and invert level of the proposed soakaway is known.

The Design Sulphate Class for the site can be taken as DS-1, and the Aggressive Chemical Environment for Concrete (ACEC) site classification be taken as AC-1.

14.3 Recommendations

Within the context of ground contamination, no further risk management procedures are recommended with respect to the proposed development of the site. However, it is recommended that a proactive approach is adopted during the future development of the site to identify and assess any previously unidentified contamination which may be encountered during development works.

15.0 NOTES

1. Standards

All boring operations, sampling of soils, *in situ* testing and geotechnical laboratory testing have been carried out in accordance with the recommendations of the British Standards BS 5930(2015)⁽¹⁾, BS 1377 (1990)⁽²⁾ and BS10175 (2001)⁽³⁾. Soil and rock descriptions follow the recommendations of BS 593. Where descriptions or classifications are based on other documents (e.g. BS 8004 (1986) or CIRIA Project Report 11 (1993)), this is stated in the report text.

2. Site methods

Unless specifically stated otherwise, the following methods are used for exploratory holes.

- Holes described as cable percussive are bored using a light cable percussive rig. Standard penetration tests are carried out where appropriate, as shown in the logs. Disturbed and undisturbed samples are taken from the exploratory holes at the depths on the records.
- Window sampling generally uses the windowless sampling method, using a tracked Geotool.
- · Dynamic probes are usually heavy dynamic probes, using the same tracked Geotool used for window sampling.

3. Definitions and abbreviations

The following terms are used in the exploratory hole logs

Samples

U	Undisturbed 102mm dia. sample
TW	Thin Walled undisturbed 102mm dia. sample
В	Bulk sample
D	Small disturbed sample
W	Water sample
CBR	California Bearing Ratio test or CBR value
	obtained from Mexiprobe test

Core recovery and rock quality

Total core recovery (%)
Solid core recovery (%)
Rock quality designation (%)
Fracture index
No recovery
Not intact

In situ tests

S	Standard penetration test (SPT)
N	SPT N value (blows/300mm)
HP	Hand penetrometer – shear strength
SV	Hand shear vane – shear strength
VOC	Volatile organic compounds (ppm)
PID	Photo-ionisation detector – used to detect the presence of
	VOCs.

Rotary drilling sizes

, ,								
	Nominal diameter (mm)							
Index letter	Borehole	Core						
N	75	54						
Н	99	76						
Р	120	92						
S	146	113						

Water strikes

∇	Level of water strike
▼	Water level rose to this level (see
	Remarks at foot of log for details)

Depth means depth below existing ground level unless otherwise specified. Values specified in soil descriptions given in the exploratory hole logs are depths unless otherwise specified.

16.0 GLOSSARY

AOD above Ordnance Datum bgl below ground level BGS British Geological Survey

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

C4SL Category 4 Screening Levels

CIEH Chartered Institute of Environmental Health
CLEA Contaminated Land Exposure Assessment

CoC Constituent of Concern CSM Conceptual Site Model

DEFRA Department of Environment, food and Rural Affairs

DQRA Detailed Quantitative Risk Assessment

DTS Desktop Study

DRO Diesel Range Organics
DWS Drinking Water Standard

EA Environment Agency (England)
EPH Extractable Petroleum Hydrocarbons
EQS Environmental Quality Standards

FOC Fraction Organic Carbon
GPR Ground Penetrating Radar

LOD Limit of detection

LQM Land Quality Management NRW Natural Resources Wales

OS Ordnance Survey

PAH Polycyclic aromatic hydrocarbon

PCB Polychlorinated biphenyl

PPE Personal Protection Equipment

ppm parts per million

PRO Petroleum Range Organics SGV Soil Guideline Values SOM Soil Organic Matter

SVOC Semi-volatile organic compounds
TPH Total Petroleum Hydrocarbon
TSV Tier 1 Screening Values
VOC Volatile Organic Carbon

VPH Volatile Petroleum Hydrocarbons

17.0 REFERENCES

- British Geological Survey . (2018). *GeoIndex* . Retrieved from http://www.bgs.ac.uk/GeoIndex/British Geological Survey. (2020). *GeoIndex*. Retrieved from http://www.bgs.ac.uk/GeoIndex/CIRIA. (2001). *Contaminated land risk assessment A guide to good practice.*
- CIRIA. (2007). CIRIA C665, Assessing Risks Posed by Hazardous Ground Gases to Building. London.
- CL:AIRE. (August 2018). *Technical Bulletin TB17. Ground Gas Monitoring and 'Worst-Case' Conditions .* CL:AIRE.
- DEFRA. (2020). *MAGIC*. Retrieved from Magic Map: http://magic.defra.gov.uk/MagicMap.aspx
 Envionment Agency . (March 2017). *New Groundwater Vulnerability Mapping Methodology in England and Wales. Reference SC040016/R.* Environment Agency .
- Environment Agency. (2008). *R&D Publication 66. Guidance for the Safe Development of Housing on Land Affected by Contamination.*
- Scivyer, C. (2015). *BRE 211. Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbisment projects). Fifth Edition.* . BRF.
- The Coal Authority. (2018). *Coal Athority Interactive Viewer*. Retrieved from http://mapapps2.bgs.ac.uk/coalauthority/home.html
- The Coal Authority. (2020). *Coal Athority Interactive Viewer*. Retrieved from http://mapapps2.bgs.ac.uk/coalauthority/home.html
- Zetica UXO. (2008). *Zetica UXO Risk Maps*. Retrieved from https://zeticauxo.com/downloads-and-resources/risk-maps/

FIGURES

Figure 1 – Site Location Plan

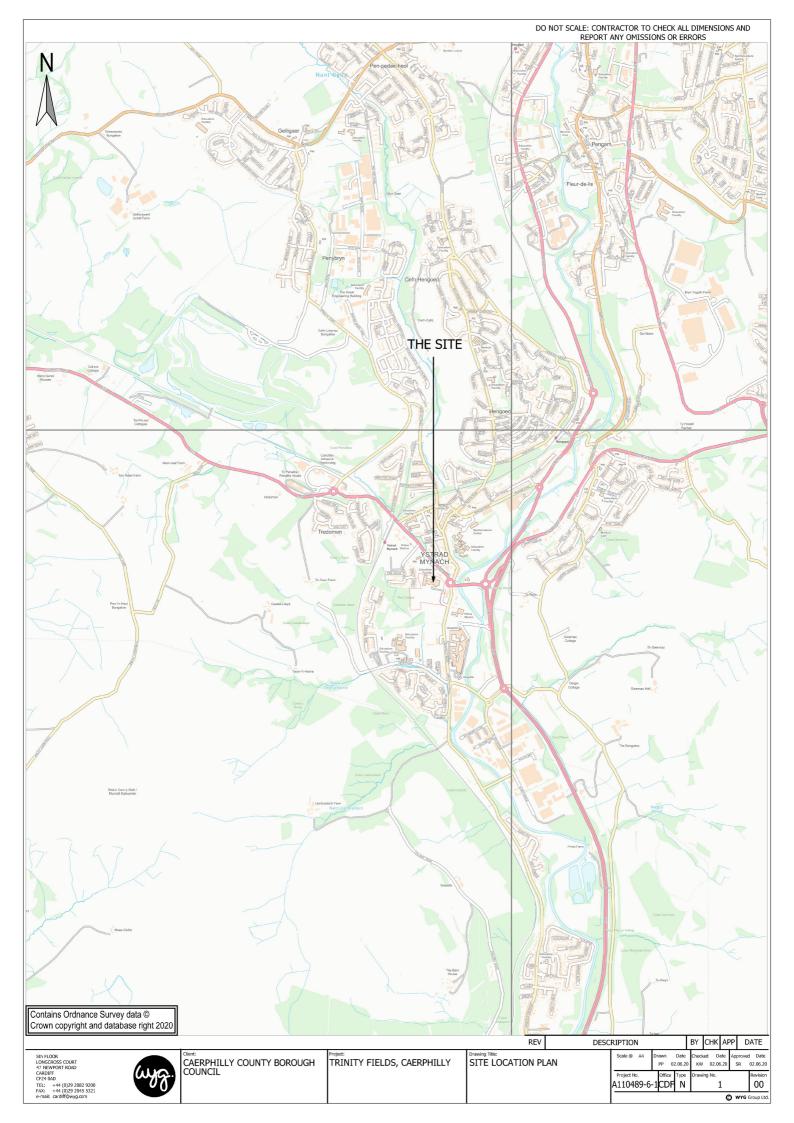
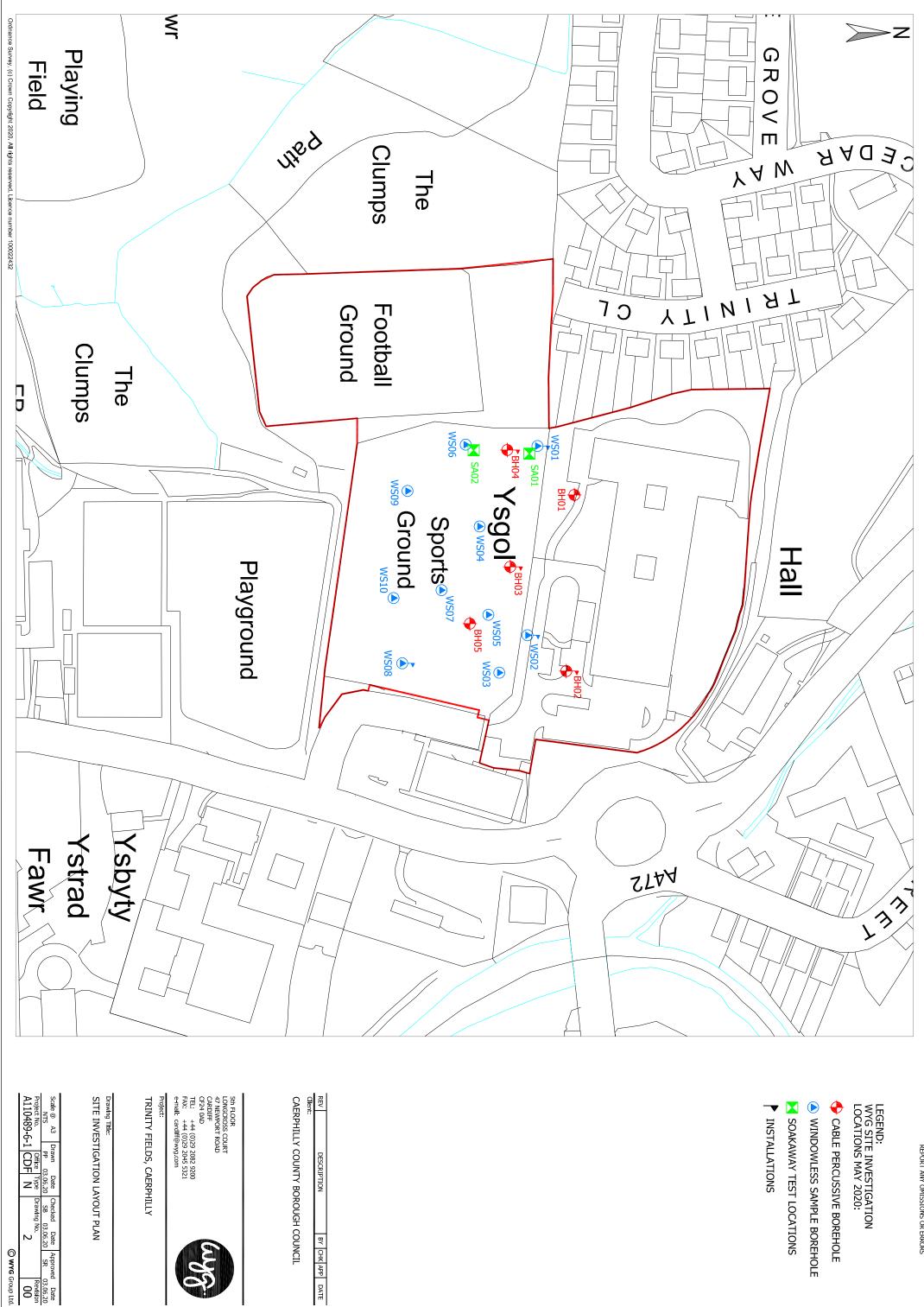
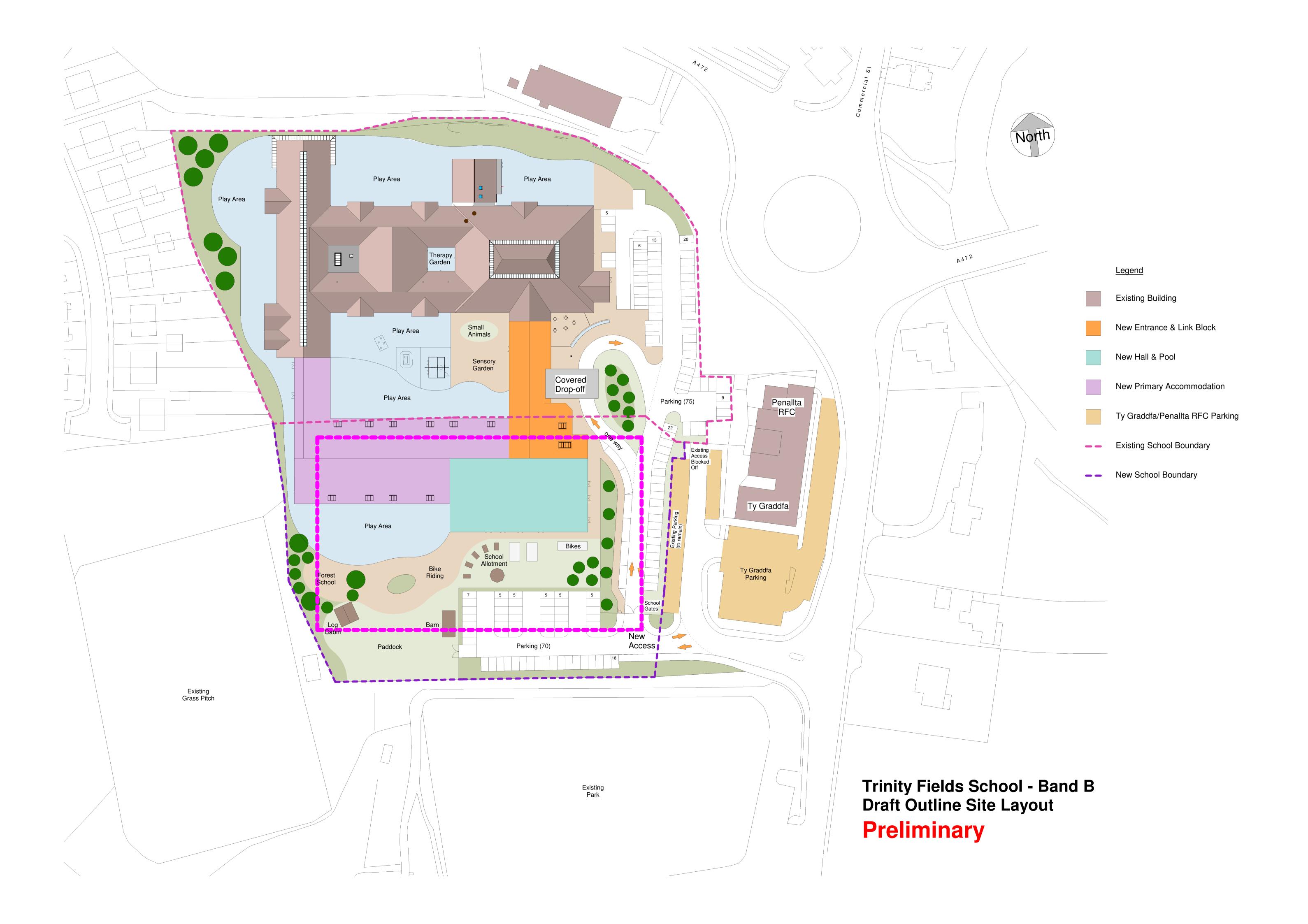



Figure 2 – Site Investigation Layout Plan

BY CHK APP DATE

WYG Group Ltd.


DO NOT SCALE: CONTRACTOR TO CHECK ALL DIMENSIONS AND REPORT ANY OMISSIONS OR ERRORS

CABLE PERCUSSIVE BOREHOLE

M SOAKAWAY TEST LOCATIONS

PROPOSED DEVELOPMENT PLAN

APPENDICES

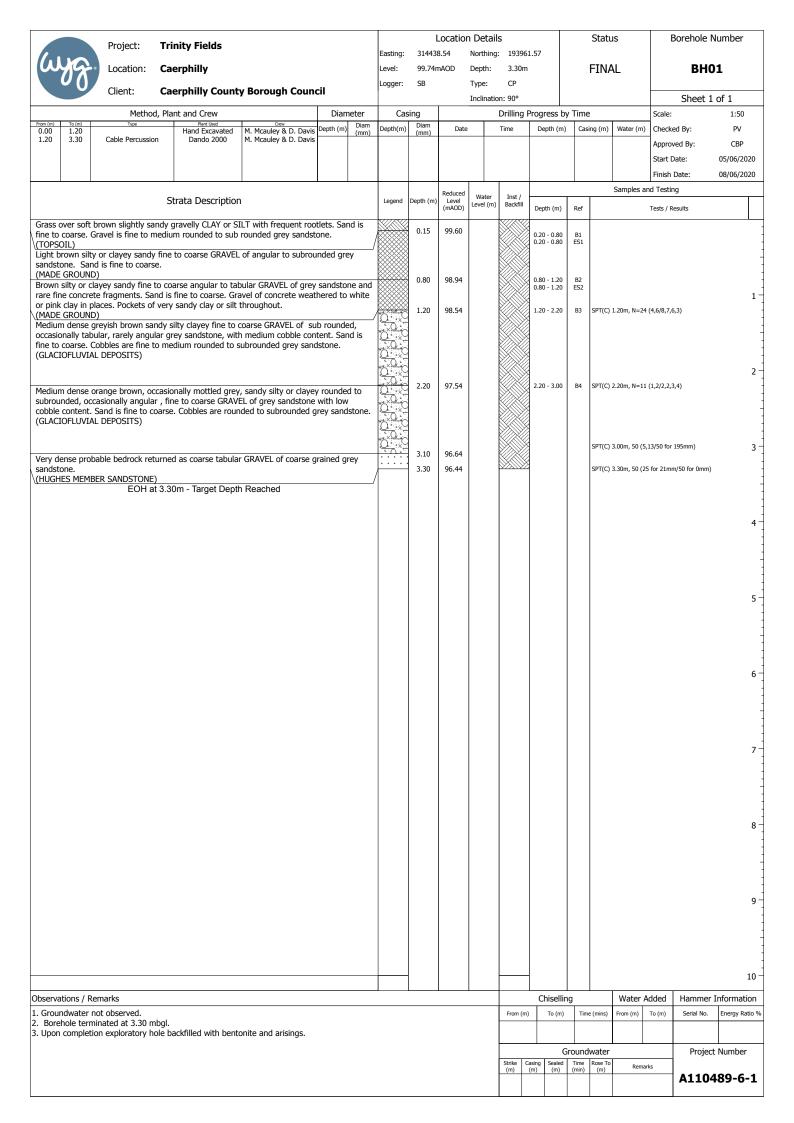
APPENDIX A - REPORT CONDITIONS

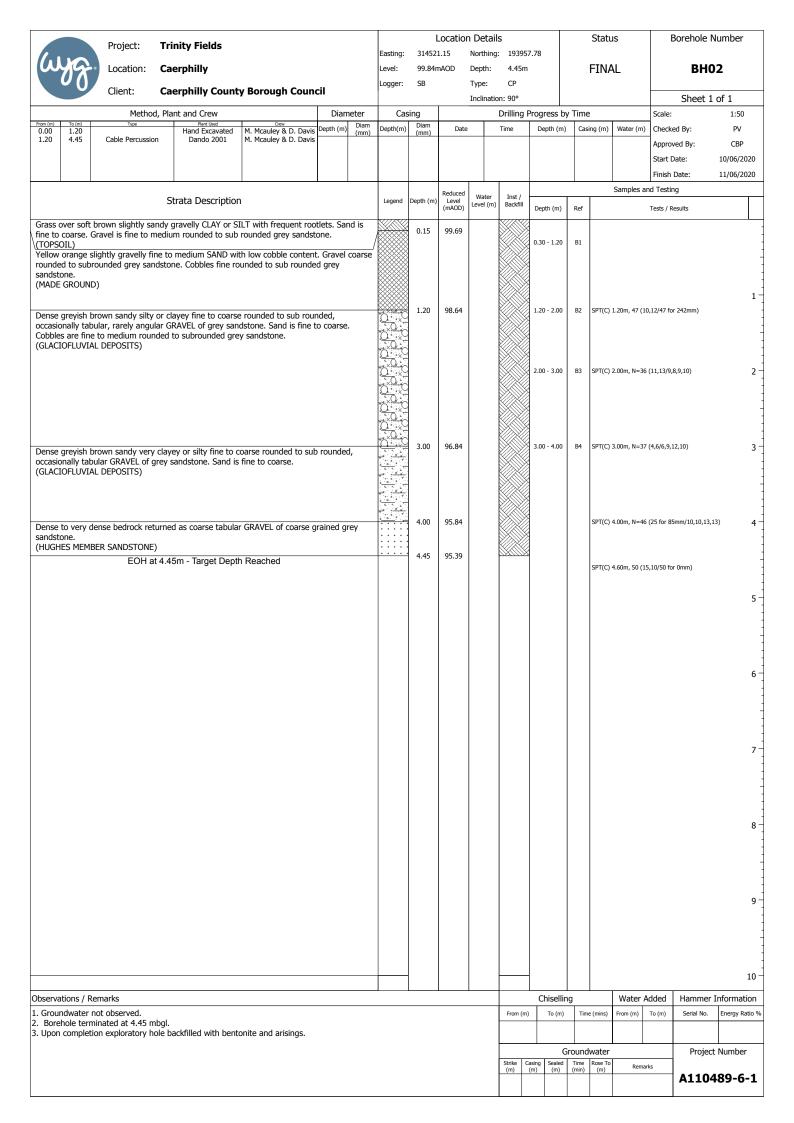
APPENDIX A - REPORT CONDITIONS GROUND INVESTIGATION

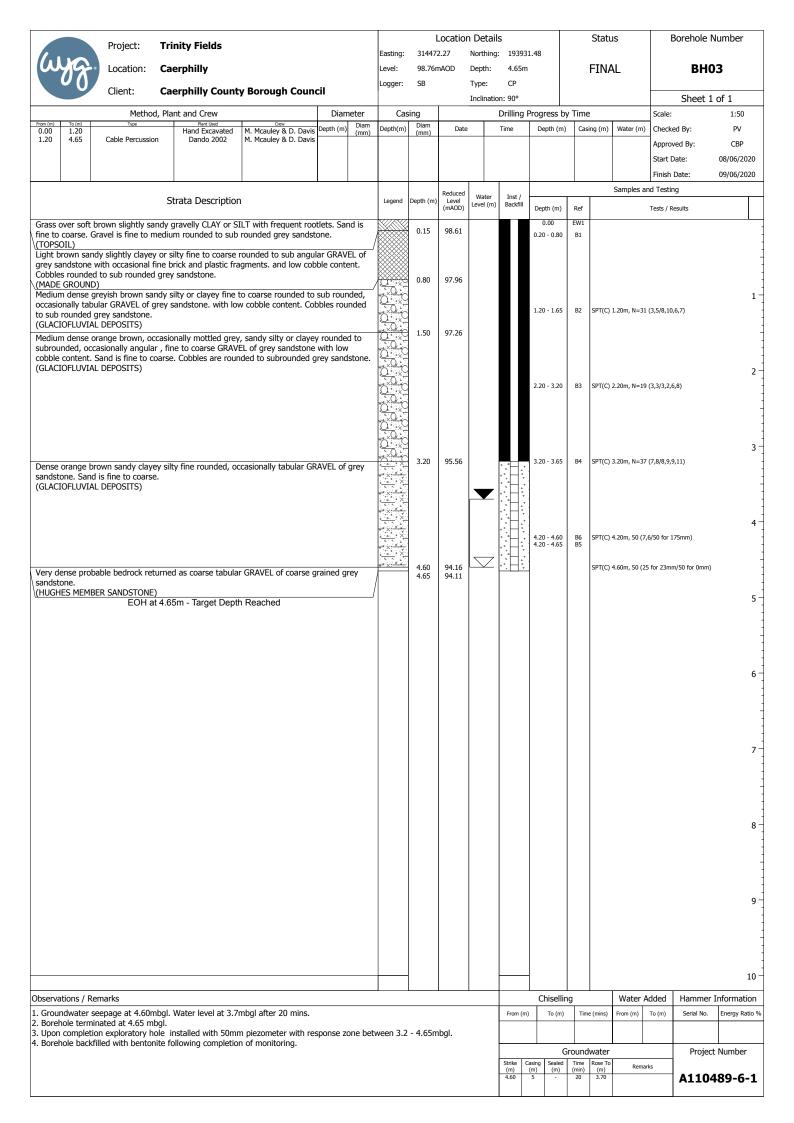
This report is produced solely for the benefit of Caerphilly County Borough Council and no liability is accepted for any reliance placed on it by any other party unless specifically agreed in writing otherwise.

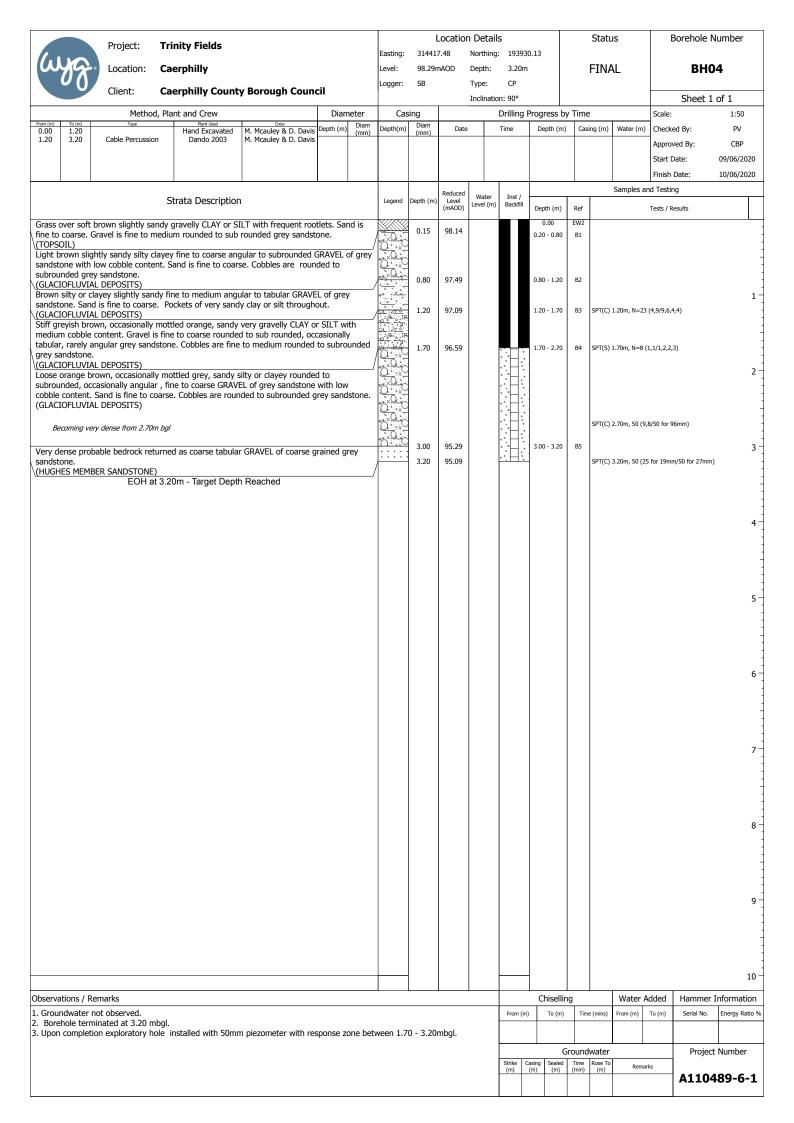
This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

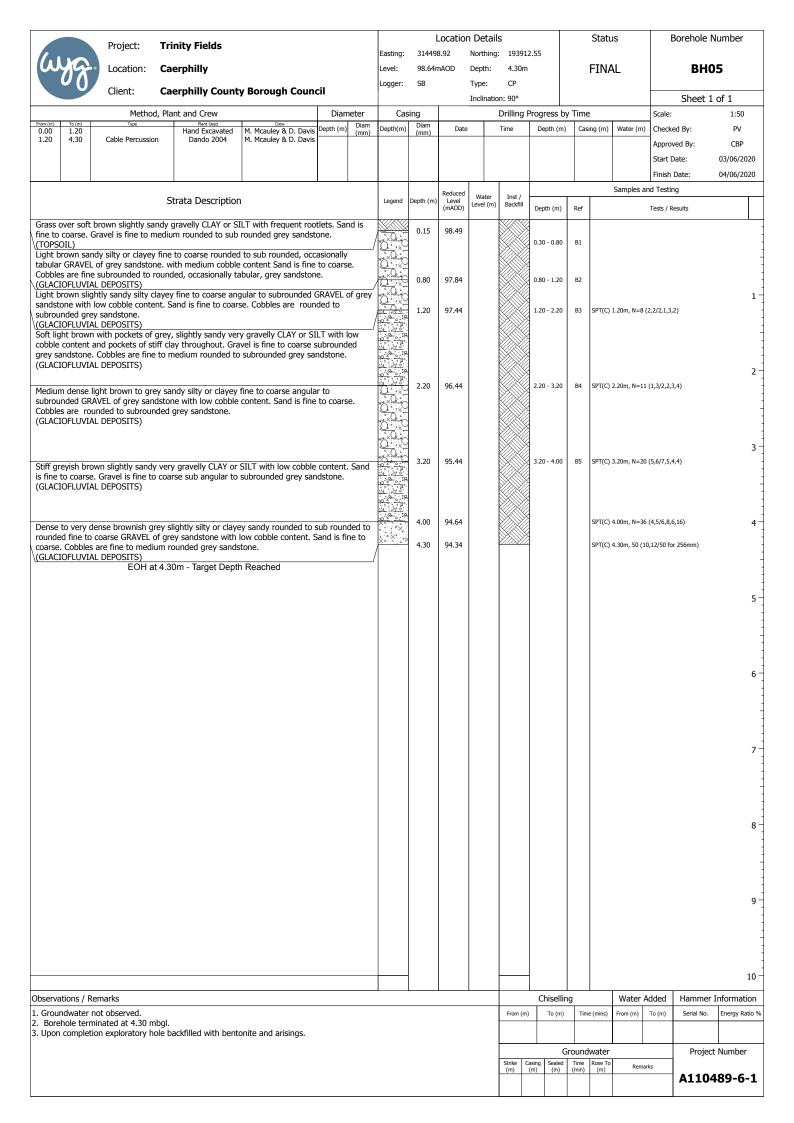
This report is based on a visual site inspection, reference to accessible referenced historical records, information supplied by those parties referenced in the text and preliminary discussions with local and Statutory Authorities. Some of the opinions are based on unconfirmed data and information and are presented as the best that can be obtained without further extensive research. Where ground contamination is suspected but no physical site test results are available to confirm this, the report must be regarded as initial advice only, and further assessment should be undertaken prior to activities related to the site. Where test results undertaken by others have been made available these can only be regarded as a limited sample. The possibility of the presence of contaminants, perhaps in higher concentrations, elsewhere on the site cannot be discounted.

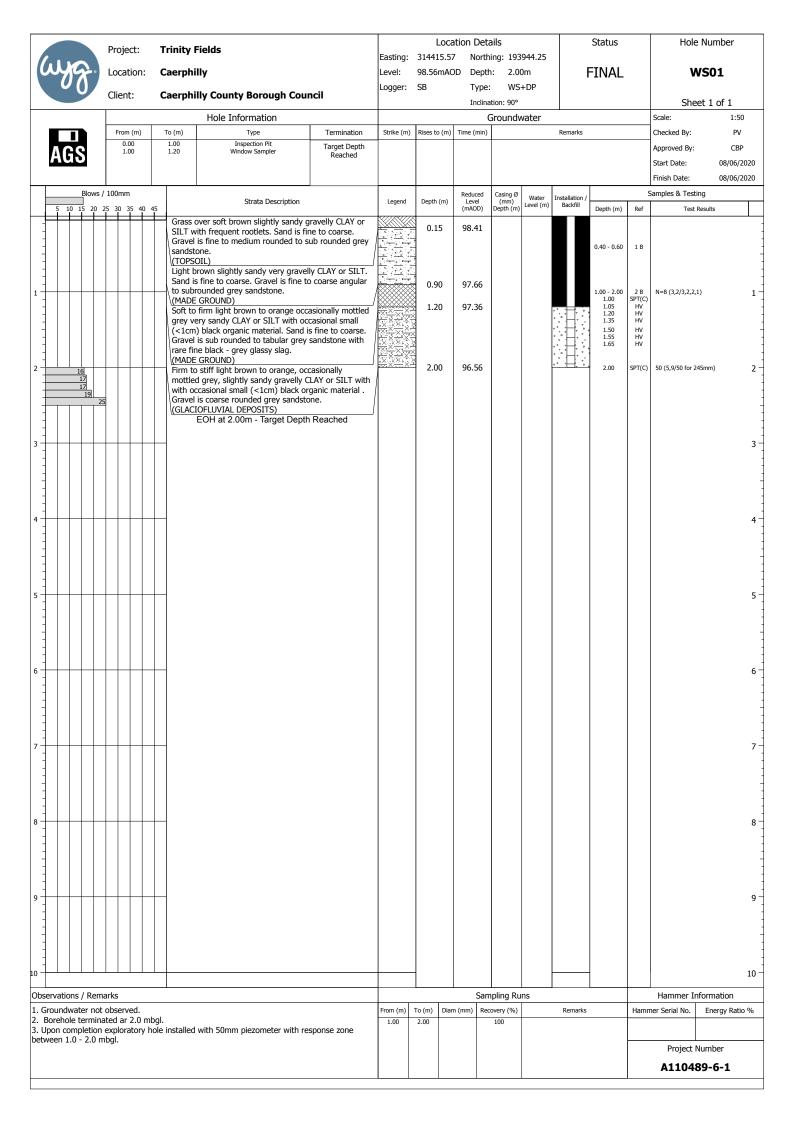

Whilst confident in the findings detailed within this report because there are no exact UK definitions of these matters, being subject to risk analysis, we are unable to give categoric assurances that they will be accepted by Authorities or Funds etc. without question as such bodies often have unpublished, more stringent objectives. This report is prepared for the proposed uses stated in the report and should not be used in a different context without reference to WYGE. In time improved practices or amended legislation may necessitate a re-assessment.

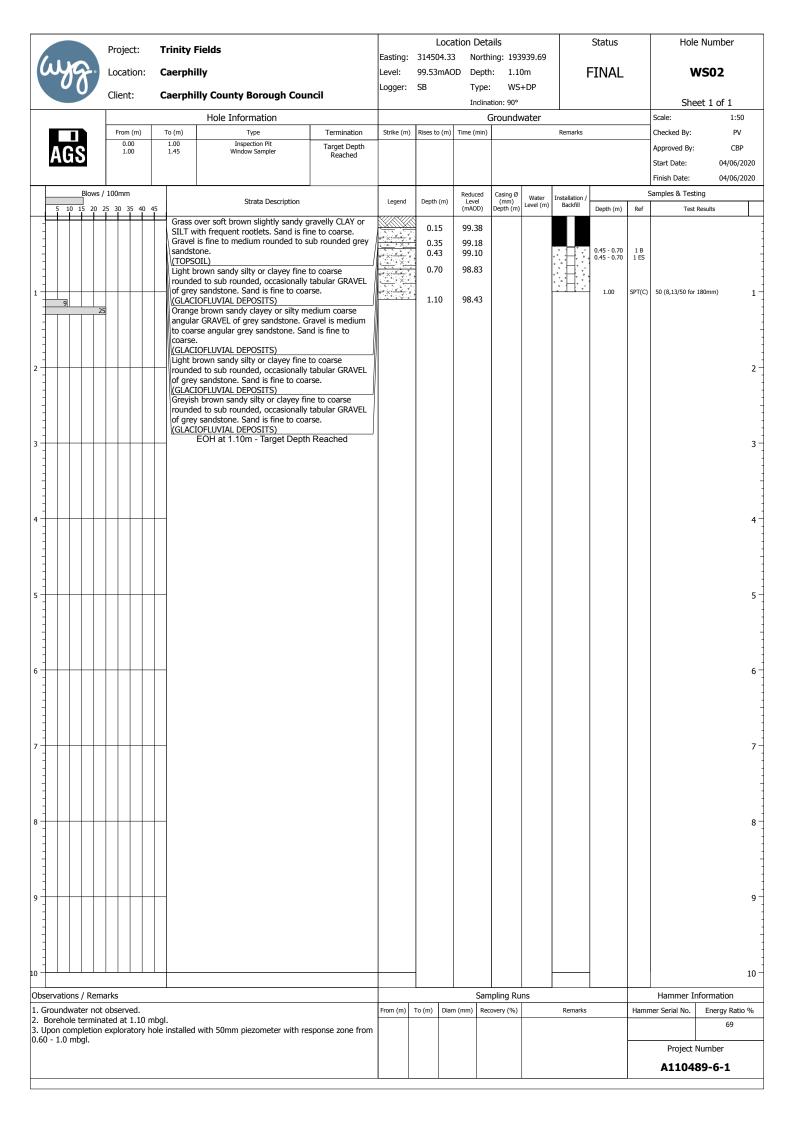

The assessment of ground conditions within this report is based upon the findings of the study undertaken. We have interpreted the ground conditions in between locations on the assumption that conditions do not vary significantly. However, no investigation can inspect each and every part of the site and therefore changes or variances in the physical and chemical site conditions as described in this report cannot be discounted.

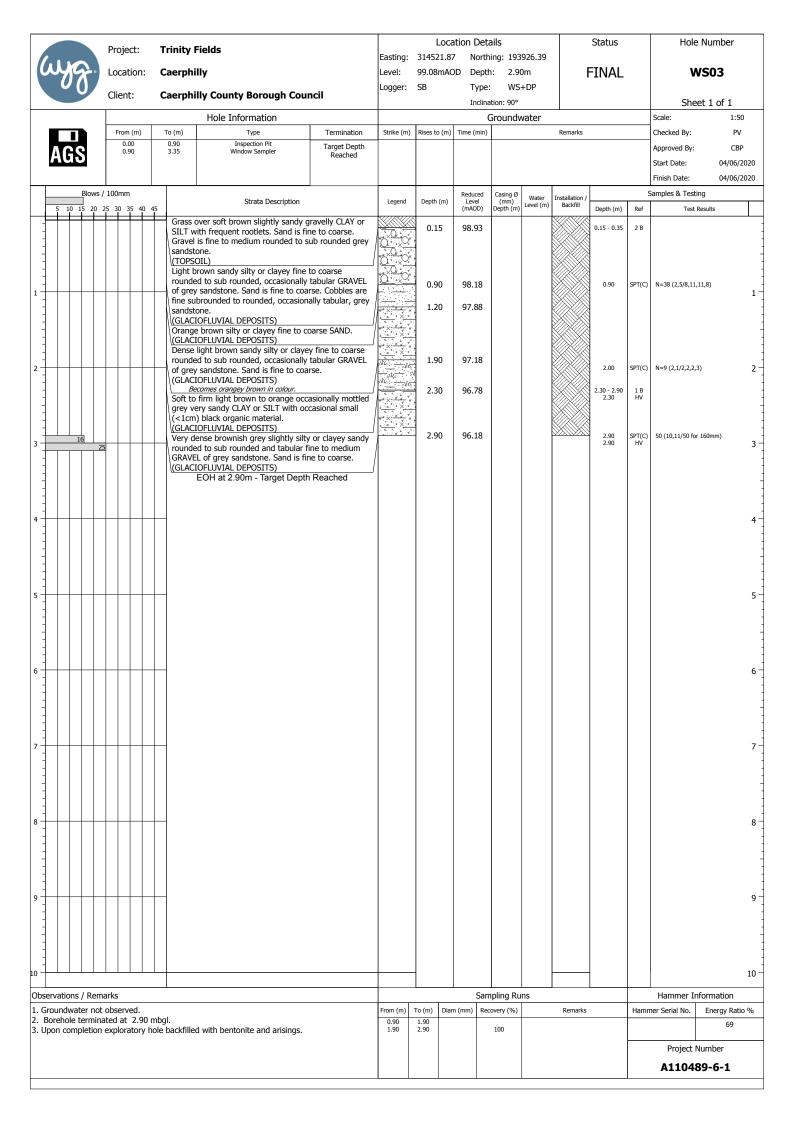

The report is limited to those aspects of land contamination specifically reported on and is necessarily restricted and no liability is accepted for any other aspect especially concerning gradual or sudden pollution incidents. The opinions expressed cannot be absolute due to the limitations of time and resources imposed by the agreed brief and the possibility of unrecorded previous use and abuse of the site and adjacent sites. The report concentrates on the site as defined in the report and provides an opinion on surrounding sites. If migrating pollution or contamination (past or present) exists further extensive research will be required before the effects can be better determined.

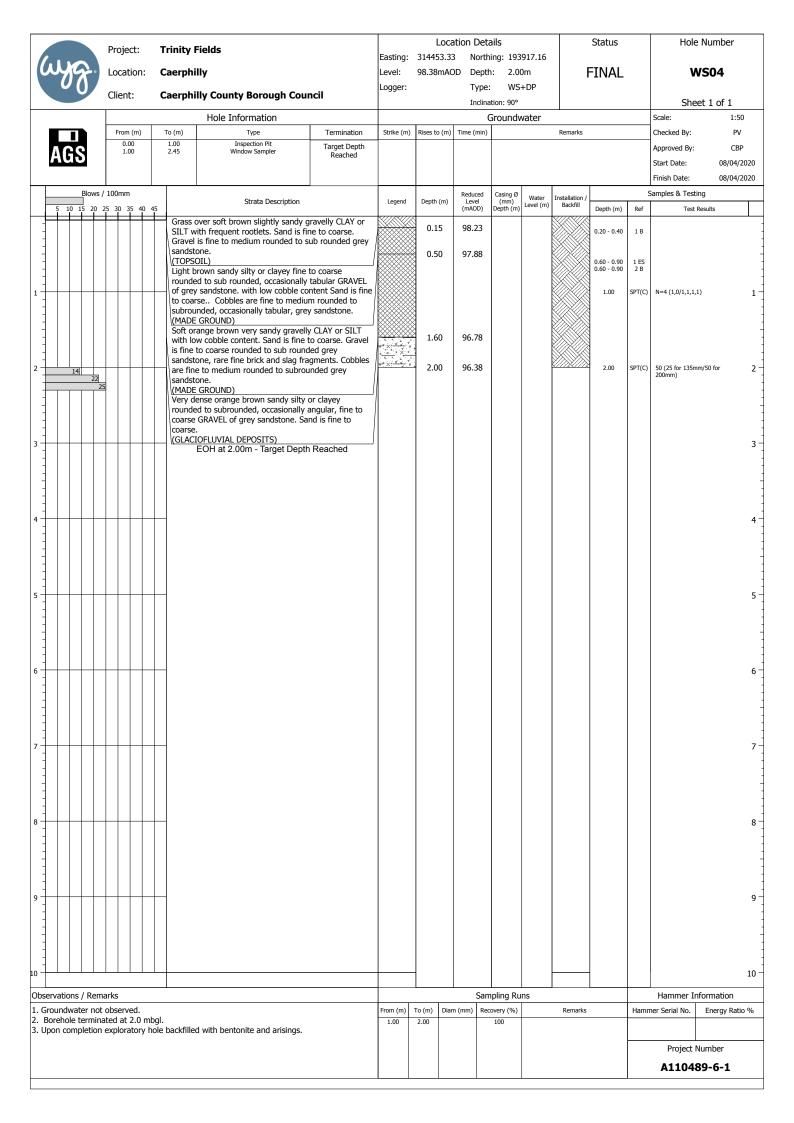


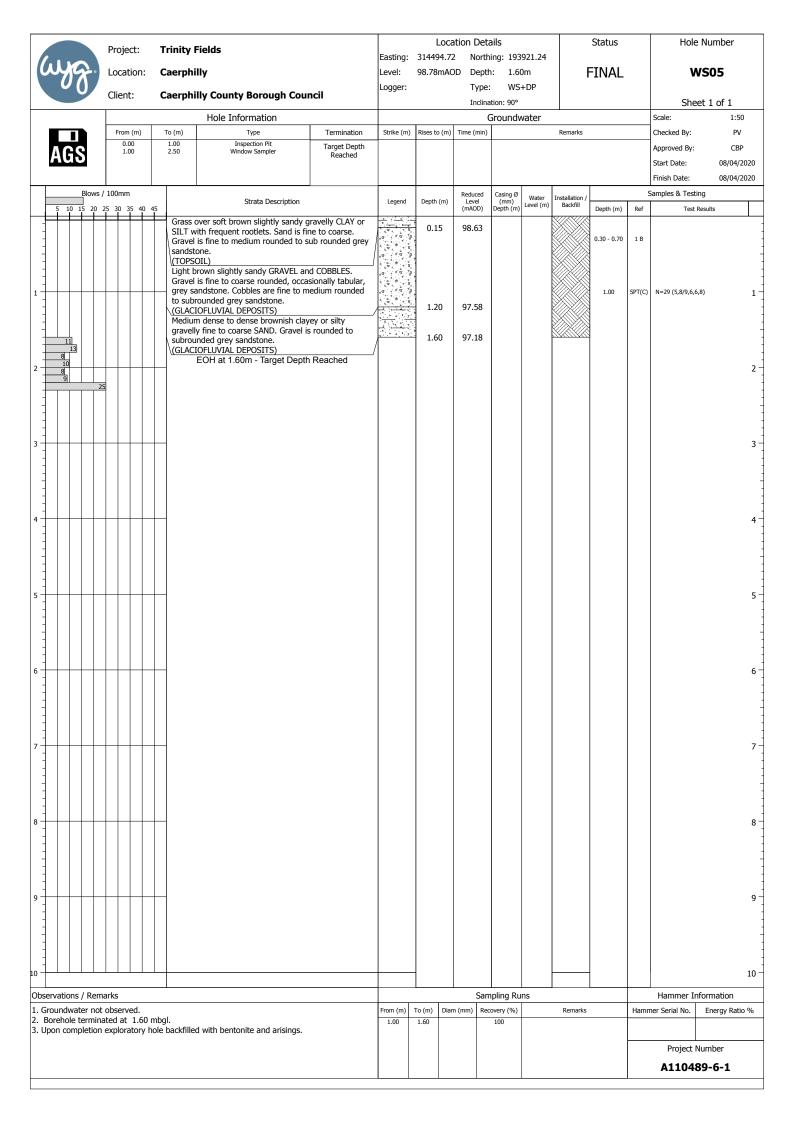

APPENDIX B – EXPLORATORY HOLE LOGS

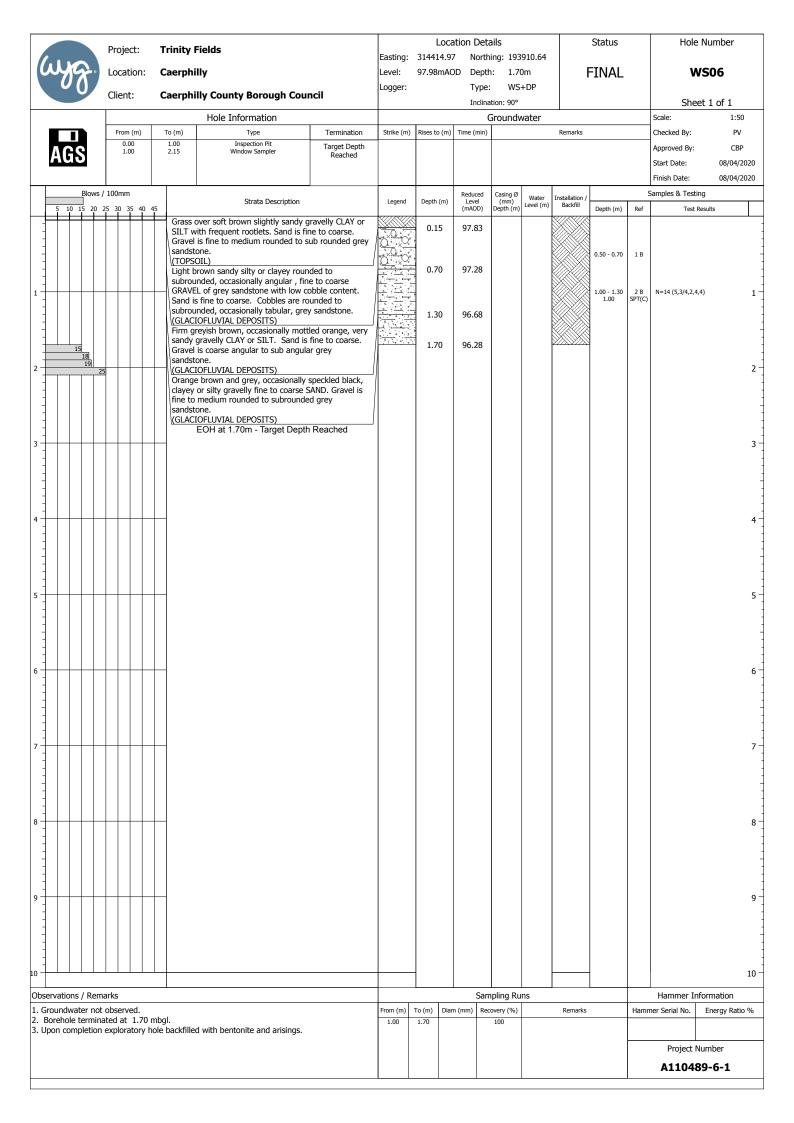


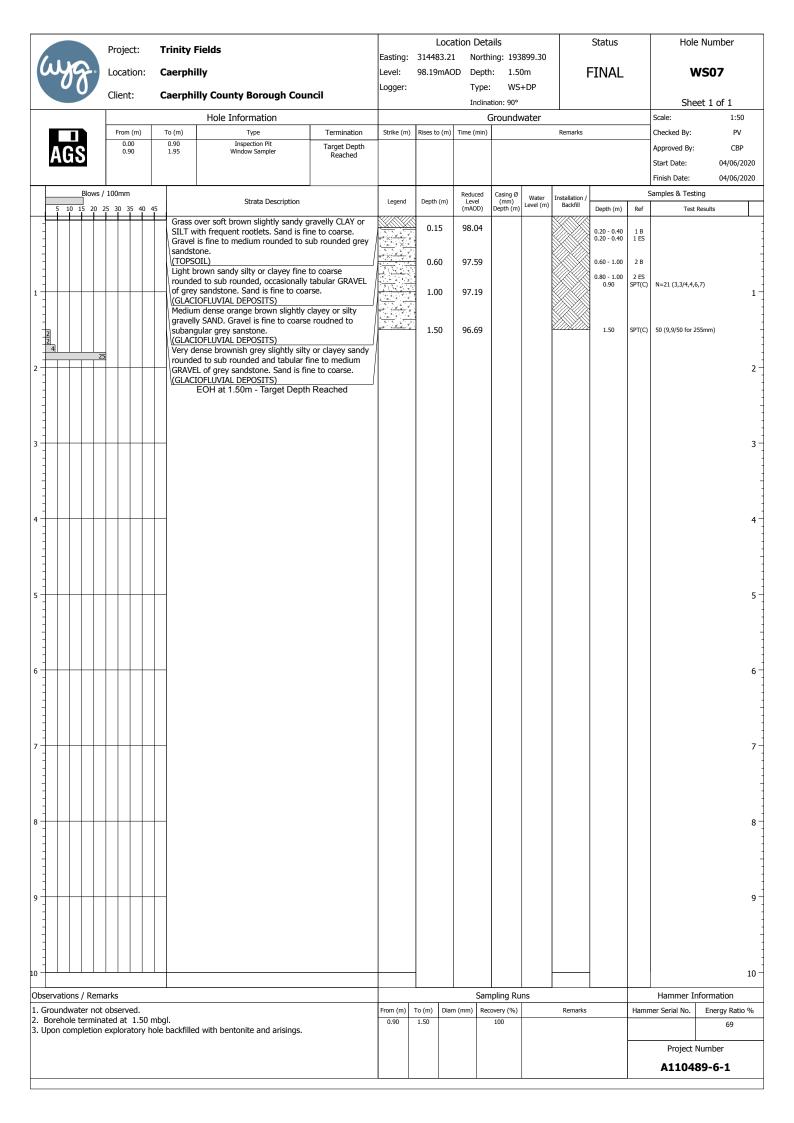


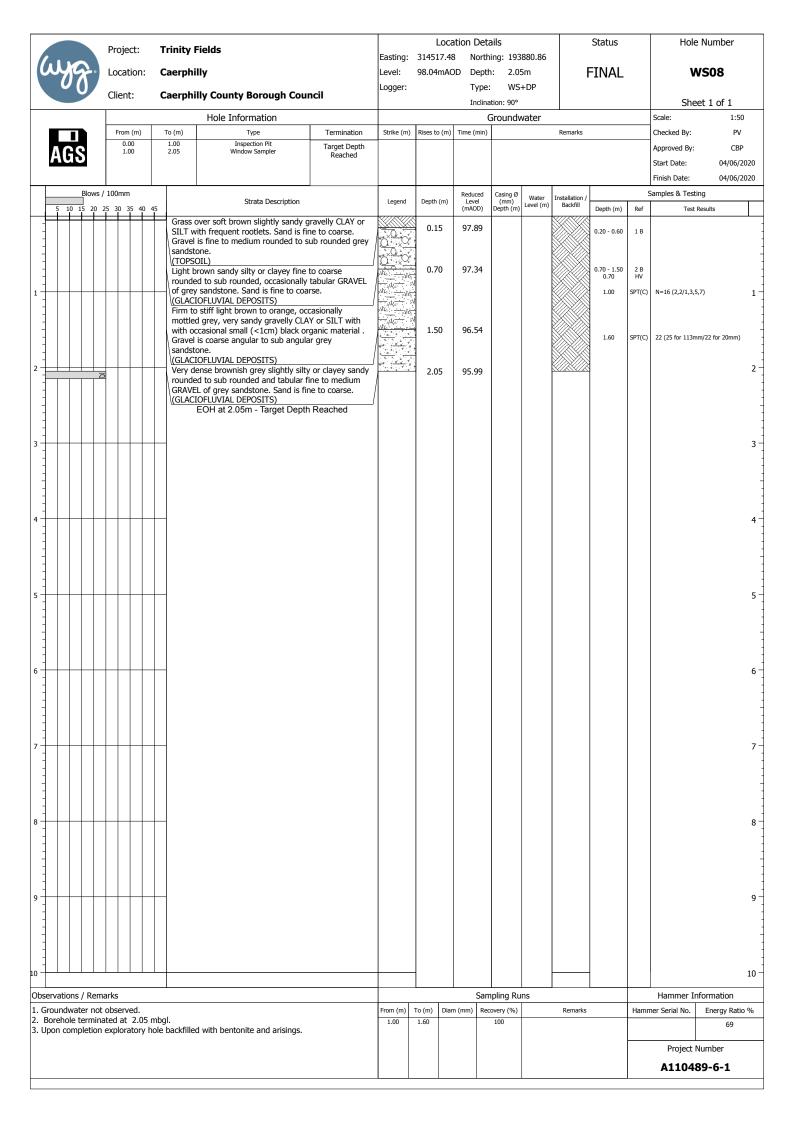

Location Details Status Borehole Number **Trinity Fields** Project: Northing: 193912.00 314506.00 Easting: **FINAL** BH05A Location: Caerphilly Level: 98.00mAOD Depth: 4.40m СР SB Type: Logger: Client: **Caerphilly County Borough Council** Sheet 1 of 1 Inclination: 90° Method, Plant and Crew Diameter Casing Drilling Progress by Time Scale: 1:50 Dian 1.20 4.40 0.00 M. Mcauley & D. Davis M. Mcauley & D. Davis Depth (m) Depth(m) Date Time Depth (m) Casing (m) Water (m) Checked By: PV (mm) (mm) Cable Percussion Dando 2005 CBP Approved By: Start Date: 04/06/2020 05/06/2020 Finish Date: Samples and Testing Water Strata Description Legend epth (m evel (m) Backfill (mAOD) Depth (m) Ref Tests / Results Grass over soft brown slightly sandy gravelly CLAY or SILT with frequent rootlets. Sand is 0.15 97.85 fine to coarse. Gravel is fine to medium rounded to sub rounded grey sandstone. 0 20 - 1 20 В1 ω. (TOPSOIL) Brown sandy silty or clayey fine to medium angular to tabular GRAVEL of grey sandstone with low cobble content. Sand is fine to coarse. (GLACIOFLUVIAL DEPOSITS) 1.20 96.80 1.20 - 2.20 SPT(C) 1.20m, N=6 (4,3/2,2,1,1) Loose orange brown sandy silty or clayey fine to coarse rounded to subrounded occasionally tabular GRAVEL of grey sandstone with low cobble content. Sand is fine to coarse. Cobbles are fine to coarse rounded to subrounded grey sandstone. (GLACIOFLUVIAL DEPOSITS) 2.20 - 3.00 ВЗ SPT(C) 2.20m, N=12 (1,1/2,2,3,5) 3.00 95.00 3.00 - 3.70 SPT(C) 3.00m, 50 (11,13/50 for 173mm) В4 3 Very dense light brown to grey sandy silty or clayey fine to coarse angular to subrounded GRAVEL of grey sandstone with low cobble content. Sand is fine to coarse. Cobbles are rounded to subrounded grey sandstone. (GLACIOFLUVIAL DEPOSITS) 3.70 - 4.20 B5 93.80 4.20 4.20 - 4.40 В6 SPT(C) 4.20m. 50 (25 for 25mm/50 for 21mm) Very dense probable bedrock returned as coarse tabular GRAVEL of coarse grained grey sandstone. 4 40 93 60 SPT(C) 4.40m, 50 (25 for 15mm/50 for 0mm) (HUGHES MEMBER SANDSTONE) EOH at 4.40m - Target Depth Reached 5 6 8 9 10 Observations / Remarks Chiselling Water Added Hammer Information 1. Groundwater not observed. From (m) To (m) Time (mins) From (m) To (m) Serial No. Energy Ratio % Borehole terminated at 4.40 mbgl. 3. Upon completion exploratory hole backfilled with bentonite and arisings. Groundwater Project Number Rose i (m) Remarks Casing (m) (m) A110489-6-1

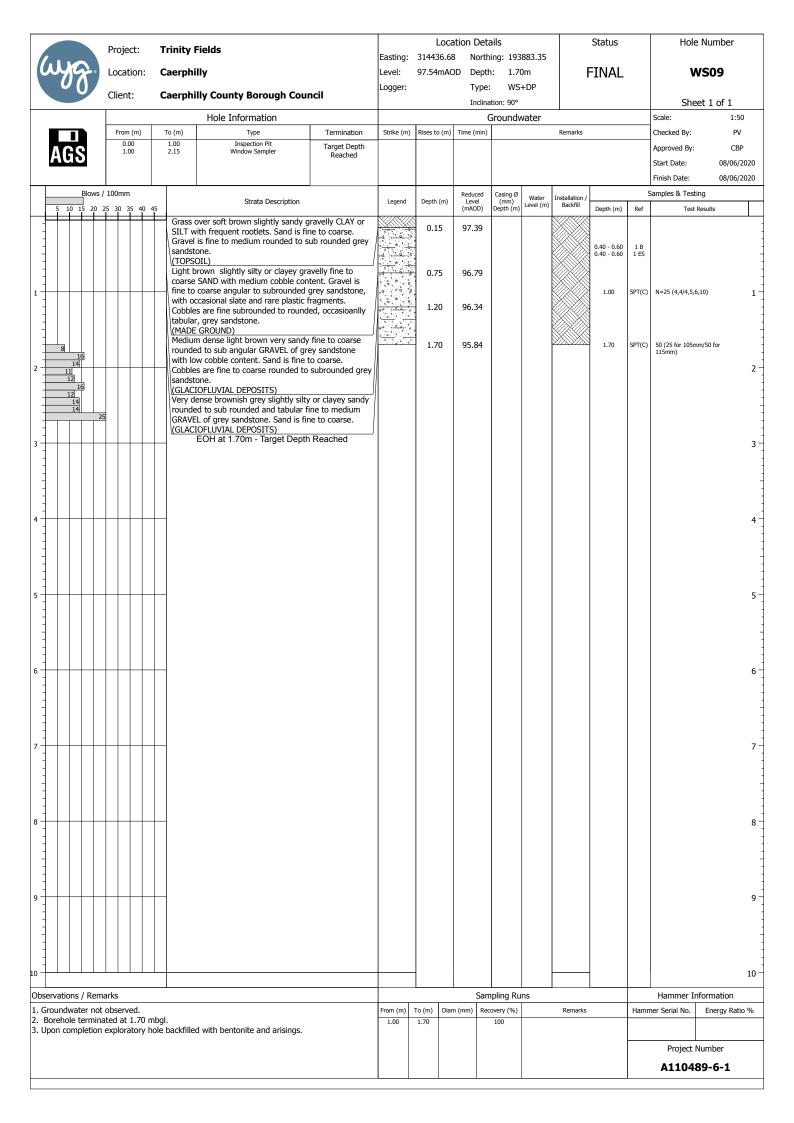

	Project: Trinity Fields						Location Details						Pit Number		
(4400)							Easting: 314419.19 Northing: 193940.45						SA01		
Wy W	Location:	Caerphill	У		Level: Logger:	98.55m.	AOD Depth Type:		0m		NAL	L SA01		.01	
	Client:	Caerphill	y County B	orough Council	Loggei.	55	i ype.	11					Sheet	1 of 1	
			Hole Inform			Grou			vater				Scale:	1:25	
	Pit Dim	ensions	Orientation:	0°	Strike (m)	Rose To (m)	Afte	er (mins)	Re	emarks		Checked By:	PV	
		0.60m	Shoring:	None Stable									Approved By: Start Date:	CBP	
	2.10m		Stability: Plant:	JCB 3CX									Finish Date:	02/06/2020 04/06/2020	
							Reduced						s and Testing		
		Strata De	escription		Legend	Depth (m	Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref		Tests / Results	;	
	or clayey sa sandstone.	I is fine to mandy fine to Sand is fine	nedium round coarse GRAV	SILT with frequent rootlets. ded to sub rounded grey /EL of angular to		0.15	98.40			0.20 - 0.30 0.20 - 0.30 0.60 - 0.80	B1 ES1			1-	
	se. Gravel r	ounded to s		r slightly gravelly silty CLAY. ne grey sandstone.		1.20	97.35			1.20 - 1.40	В3			-	
coarse SAND with	n low cobble ular , fine to ndstone. Fre . DEPOSITS)	e content. Gi coarse grey quent pocke	ravel is round sandstone.			2.60	96.65			2.10 - 2.40	B4			2 -	
														3 -	
														4	
Observations / Re	marks											lons-	one Court	5	
Groundwater not a Trial pit terminate Upon completion a	observed. ed at 2.60 ml		with arisings.									Cardiff, CF24 0A 029 2082	AD		
													Project Num	nber	
													A110489	-6-1	

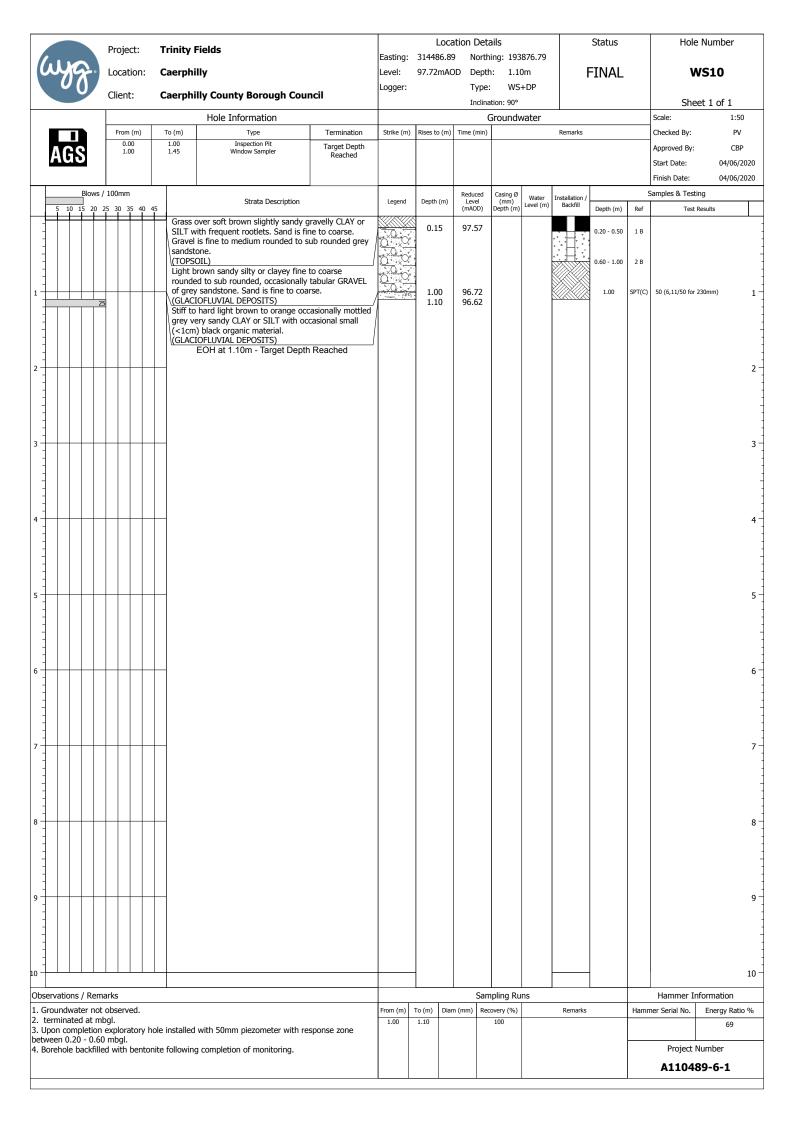

	Project:	Trinity Fi	elds	F	ocation Deta		01424	S	tatus		Pit Number				
wa.	Location:	Caerphill	v		1	Easting: 314417.57 Northing: 193914.34 Level: 97.96mAOD Depth: 2.80m							SA	02	
00		-	•			SB	Type:		,,,,	'1	NAL	-	SAGE		
	Client:	Caerphill	y County Bo	orough Council								Sheet 1 of 1			
			Hole Inform					Groundy					Scale: 1:25		
	Pit Dim	ensions	Orientation: Shoring:	None	Strike ((m)	Rose To (m)	Afte	er (mins)	Re	emarks		Checked By: Approved By:	PV CBP	
		0.60m	Stability:	Stable									Start Date:	02/06/202	.0
	2.20m		Plant:	JCB 3CX								F	Finish Date:	03/06/202	0
		Ctroto D	occription		Logond	Depth (r	Reduced	Water	Backfill			Samples	and Testing		
		Strata De	escription		Legend	рериі (і	n) Level (mAOD)	Level (m)	DdCKIIII	Depth (m)	Ref		Tests / Results		
Grass over soft brown slightly sandy gravelly CLAY or SILT with frequent rootlets. Sand is fine to coarse. Gravel is fine to medium rounded to sub rounded grey sandstone. (TOPSOIL) Light brown sandy silty or clayey fine to coarse rounded to sub rounded, occasionally tabular GRAVEL of grey sandstone with medium cobble content. Sand is fine to coarse. Cobbles are fine subrounded to rounded, occasionally tabular, grey sandstone. (MADE GROUND) Light brown sandy silty or clayey fine to coarse rounded to sub rounded, occasionally tabular GRAVEL of grey sandstone with medium cobble content. Sand is fine to coarse. Gravel is fine to medium rounded to sub rounded, occasionally tabular, grey sandstone. Sand is fine to coarse. Gravel is fine to medium rounded to sub rounded, occasionally angular, grey sandstone. Cobbles are fine to coarse sub angular to rounded grey sandstone and rare fragments of brick and wood. (MADE GROUND) Brownish grey, occasionally mottled orange, sandy silty or clayey fine to coarse rounded to sub rounded, occasionally tabular GRAVEL of grey sandstone. with low cobble content. Cobbles rounded to sub rounded grey sandstone. (IGLACIOFLUVIAL DEPOSITS) Light brown sandy silty or clayey fine to coarse rounded to sub rounded, occasionally tabular GRAVEL of grey sandstone. with low cobble content. Sand is fine to coarse. Cobbles are fine subrounded to rounded, occasionally tabular, grey sandstone. (GLACIOFLUVIAL DEPOSITS) Stiff to very stiff grey or orange gravelly CLAY or SILT. Gravel is fine to coarse rounded to subrounded grey sandstone. (GLACIOFLUVIAL DEPOSITS)						0.15 0.30 0.60	97.81 97.66 97.36 96.76			0.20 - 0.30 0.30 - 0.60 0.60 - 1.00	B1 B2 B3 B4		Tests / Results		2 3
															1
															_
											-				
															-
]
															_ =
															5 –
Observations / Re 1. Groundwater not of the control of the contro	observed. ed at 2.80 mb		with arisings.									Longcros Cardiff, CF24 0Al	.D	her	
													A110489-		











Trinity Fields Ground Investigation Report

APPENDIX C – TRL PROBE TEST RESULTS

5th Floor, Longcross Court, 47 Newport Road, Cardiff

Tel: 02920 829200 Fax: 02920 455321 Environmental Consultancy Ground Engineering Services

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

FIGURE No.: TRL01

DCP-CBR Corellation

37

38

39

40

41

42

43

44

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$

In situ CBR by TRL Probe

Position: TRL01 Reference: 1 Date: 01 June 2020

mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)	mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)
35	1	76	35		46		-45
17	2	190	52		47		-45
37	3	252	89		48		-45
13	4	304	102		49		-45
14	5	350	116		50		-45
13	6	395	129		51		-45
11	7	185	140		52		-45
9	8	194	149		53		-45
11	9	205	160		54		-45
10	10	215	170		55		-45
7	11	222	177		56		-45
8	12	230	185		57		-45
6	13	236	191		58		-45
6	14	242	197		59		-45
6	15	248	203		60		-45
4	16	252	207		61		-45
6	17	258	213		62		-45
4	18	262	217		63		-45
8	19	270	225		64		-45
10	20	280	235		65		-45
6	21	286	241		66		-45
	22	286	241		67		-45
	23	286	241		68		-45
-286	24		-45		69		-45
	25		-45		70		-45
	26		-45		71		-45
	27		-45		72		-45
	28		-45		73		-45
	29		-45		74		-45
	30		-45		75		-45
	31		-45		76		-45
	32		-45		77		-45
	33		-45		78		-45
	34		-45		79		-45
	35		-45		80		-45
	36	ĺ	-45		81	ĺ	-45

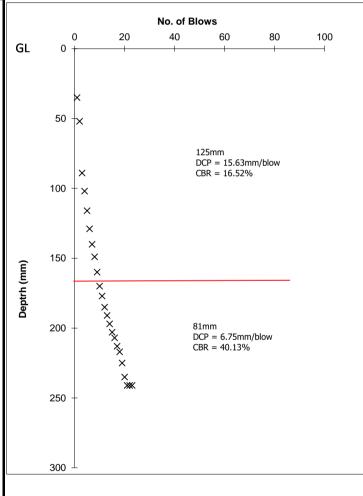
-45

-45

-45

-45

-45


-45

-45

-45

Test started at: 0 m below ground level Zero Reading: 45

Zero reading = start depth below ground surface

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

82

83

84

85

86

87

88

89

-45

-45

-45

-45

-45

-45

-45

Data compiled by: SB Data checked by:

CP

5th Floor, Longcross Court, 47 Newport Road, Cardiff

Tel: 02920 829200 Fax: 02920 455321 Environmental Consultancy Ground Engineering Services

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

FIGURE No.: TRL02

DCP-CBR Corellation

35

36

37

38

39

40

41

42

43

44

3

-290

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$

In situ CBR by TRL Probe

Reference: Position: TRL02 1 Date: 01 June 2020

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

Referei	ice.	1			P	ositioi i.	TKLUZ
mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)	mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)
30	1	76	30		46		-60
30 20 15 15 16 12 8 10 8	2 3 4 5 6 7 8 9	190 252 304 350 395 198 206 216 224	60 80 95 110 126 138 146 156		47 48 49 50 51 52 53 54 55		-60 -60 -60 -60 -60 -60 -60
6	11	230	170		56		-60
4	12	234	174		57		-60
6	13	240	180		58		-60
4	14	244	184		59		-60
4 2	15 16 17 18	248 250 250 250	188 190 190 190		60 61 62 63		-60 -60 -60 -60
2	19	252	190		64		-60 -60
3	20	255	195		65		-60
1	21	256	196		66		-60
4	22	260	200		67		-60
1	23	261	201		68		-60
2	24	263	203		69		-60
1	25	264	204		70		-60
2	26	266	206		71		-60
4	27	270	210		72		-60
1	28	271	211		73		-60
2	29	273	213		74		-60
4	30	277	217		75		-60
4	31	281	221		76		-60

224

226

230

230

230

230

-60

-60

-60

-60

-60

-60

-60

284

290

290

290

77

78

79

80

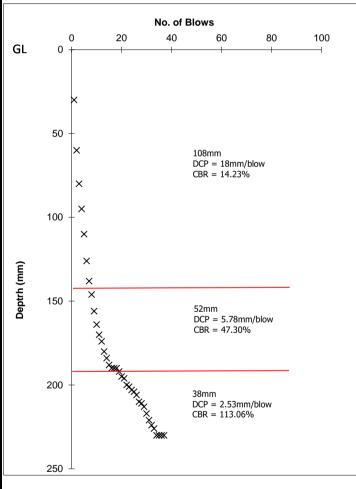
81

82

83

84

85


86

87

88

89

Test started at: 0 m below ground level Zero Reading: 60 Zero reading = start depth below ground surface

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

Fax: 02920 455321

5 7

7

-264

22

5th Floor, Longcross Court, 47 Newport Road, Cardiff Tel: 02920 829200 Environmental Consultancy

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

FIGURE No.: TRL03

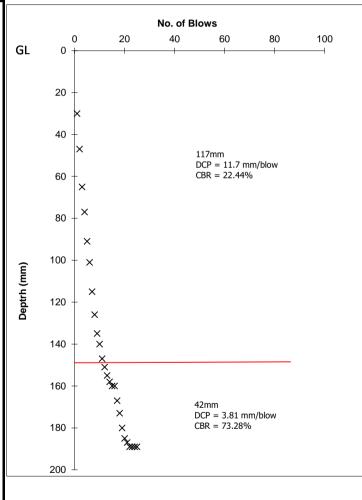
DCP-CBR Corellation

Ground Engineering Services

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$


In situ CBR by TRL Probe

Position: TRL03 Reference: Date: 01 June 2020

Depth Depth Reading Reading mm from mm from Σ Σ per on Scale Ground per on Scale Ground Blows Blows blow (mm) Level blow (mm) Level (mm) (mm)

Test started at: m below ground level

Zero Reading: Zero reading = start depth below ground surface

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

5th Floor, Longcross Court, 47 Newport Road, Cardiff

Tel: 02920 829200 Fax: 02920 455321 Environmental Consultancy

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

FIGURE No.: TRL04

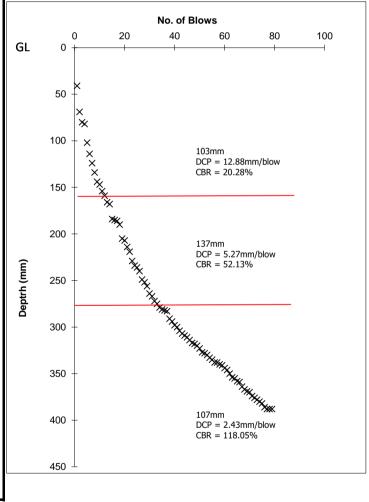
DCP-CBR Corellation

Ground Engineering Services

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$


In situ CBR by TRL Probe

Reference: 1 Position: WS06 Date: 10 June 2020

Kereren	ice:	1			PC	osition:	W506
mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)	mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)
41	1	76	41	3	46	380	314
28	2	190	69	3	47	383	317
11	3	252	80	1	48	384	318
2	4	304	82	2	49	386	320
20	5	350	102	3	50	389	323
12	6	395	114	4	51	393	327
10	7	190	124	1	52	394	328
10	8	200	134	2	53	396	330
10	9	210	144	3	54	399	333
3	10	213	147	2	55	401	335
7	11	220	154	3	56	404	338
5	12	225	159		57	404	338
7	13	232	166	2	58	406	340
2	14	234	168	1	59	407	341
16	15	250	184	3	60	410	344
1	16	251	185	2	61	412	346
1	17	252	186	4	62	416	350
4	18	256	190	4	63	420	354
15	19	271	205	1	64	421	355
2	20	273	207	3	65	424	358
7	21	280	214	1	66	425	359
5	22	285	219	5	67	430	364
10	23	295	229	3	68	433	367
5	24	300	234	2	69	435	369
2	25	302	236	1	70	436	370
4	26	306	240	4	71	440	374
9	27	315	249	2	72	442	376
3	28	318	252	2	73	444	378
4	29	322	256	2	74	446	380
8	30	330	264	2	75	448	382
3	31	333	267	4	76	452	386
5	32	338	272	2	77	454	388
3	33	341	275				

Test started at: 0 m below ground level
Zero Reading: 66 mm

Zero reading = start depth below ground surface

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

5th Floor, Longcross Court, 47 Newport Road, Cardiff

Tel: 02920 829200 Fax: 02920 455321 Environmental Consultancy Ground Engineering Services

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

FIGURE No.: TRL05

DCP-CBR Corellation

42

43

44

1 2

377

379

382

291

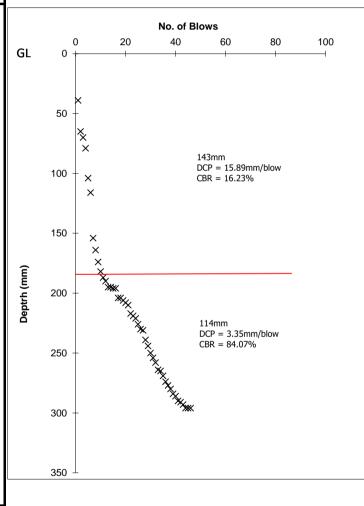
293

296

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$


In situ CBR by TRL Probe

Reference: Position: WS09 1 Date: 10 June 2020

Referer	ice:	1			P	osition:	W509
mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)	mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)
39	1	76	39		46	382	296
26	2	190	65				
5	3	252	70				
9	4	304	79				
25	5	350	104				
12	6	395	116				
38	7	240	154				
10	8	250	164				
10	9	260	174				
8	10	268	182				
5	11	273	187				
3 5	12	276	190				
5	13 14	281 281	195 195				
1	15	282	195				
1	16	282	196				
8	17	290	204				
8	18	290	204				
2	19	292	206				
2	20	294	208				
2	21	296	210				
7	22	303	217				
2	23	305	219				
2	24	307	221				
5	25	312	226				
4	26	316	230				
1	27	317	231				
8	28	325	239				
5	29	330	244				
6	30	336	250				
4	31	340	254				
4	32	344	258				
6	33	350	264				
1 4	34	351	265				
4 5	35 36	355 360	269 274				
3	37	363	274 277				
3	38	366	280				
4	39	370	284				
2	40	370	286				
4	41	376	290				
1	41	370	290			ĺ	

Test started at: 0 m below ground level Zero Reading: 86

Zero reading = start depth below ground surface

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

5th Floor, Longcross Court, 47 Newport Road, Cardiff

Tel: 02920 829200 Fax: 02920 455321 Environmental Consultancy Ground Engineering Services

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

FIGURE No.: TRL06

DCP-CBR Corellation

4 1

7

14

3 9

10

5

3

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

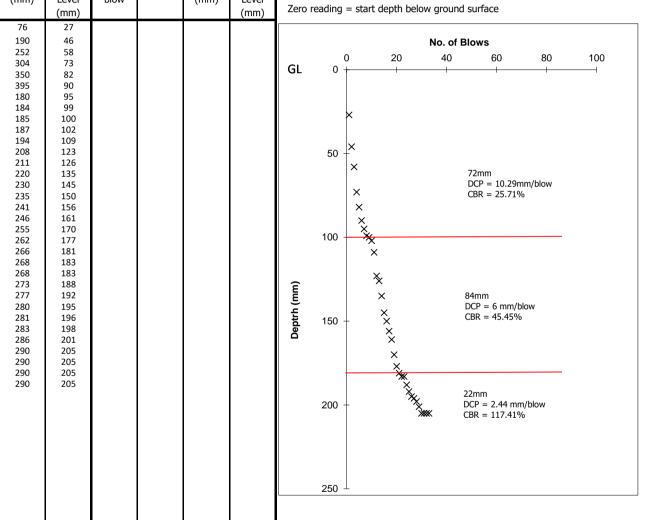
29

30

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$


In situ CBR by TRL Probe

Position: TRL06 Reference: 1 Date: 01 June 2020

mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)	mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)
27	1	76	27				
19	2	190	46				
12	3	252	58				
15	4	304	73				
9	5	350	82				
8	6	395	90				
5	7	180	95				

Test started at: 0 m below ground level

Zero Reading: 85

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

5th Floor, Longcross Court, 47 Newport Road, Cardiff

Tel: 02920 829200 Fax: 02920 455321

4

31

32

34

283

287

290

198

202

205

205

Environmental Consultancy Ground Engineering Services

PROJECT No.: A110489-6-1

PROJECT NAME: Trinity Fields School

CLIENT: CCBC

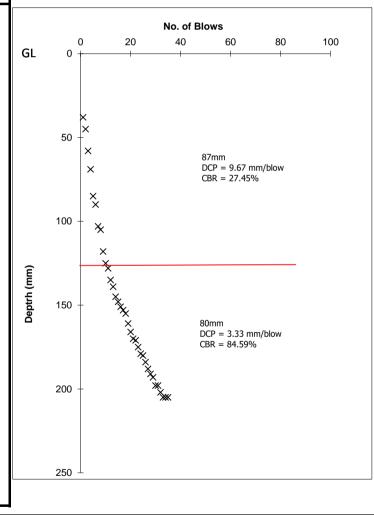
FIGURE No.: TRL07

DCP-CBR Corellation

 $Log_{10}(CBR) = 2.48-1.057 \times Log_{10} (mm/blow)$

DCP - Modulus E Corellation

 $E = 17.6 (CBR)^{0.64} MPa$


In situ CBR by TRL Probe

Position: WS10 Reference: 1 Date: 10 June 2020

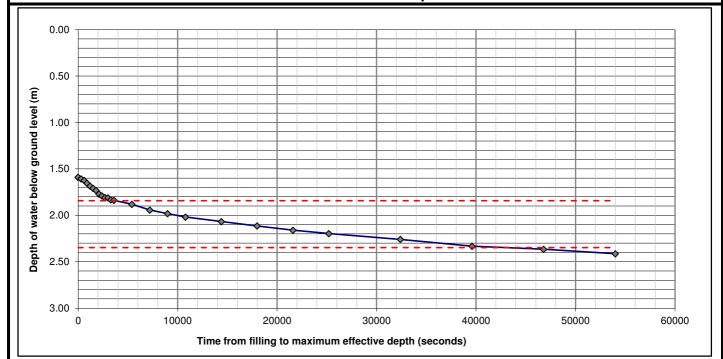
mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)	mm per blow	Σ Blows	Reading on Scale (mm)	Depth from Ground Level (mm)
38	1	76	38				
7	2	190	45				
13	3	252	58				
11	4	304	69				
16	5	350	85				
5	6	395	90				
13	7	188	103				
2	8	190	105				
13	9	203	118				
7	10	210	125				
3	11	213	128				
7	12	220	135				
4	13	224	139				
6	14	230	145				
3	15	233	148				
3	16	236	151				
2	17	238	153				
2	18	240	155				
6	19	246	161				
5	20	251	166				
4	21	255	170				
1	22	256	171				
4	23 24	260 264	175 179				
4		-	-				
1	25	265	180				
4 4	26 27	269 273	184 188				
3	27 28	273 276	188 191				
2	28 29	276	191				
5	30	278	193				
э	30	203	190		ĺ	ĺ	

Test started at: 0 m below ground level 85

Zero Reading: Zero reading = start depth below ground surface

After Design manual for Roads and Bridges, Volume 7 Pavement Design and maintenance, Section 3 Pavement Maintenace Assessment, Part 2 HD29/08

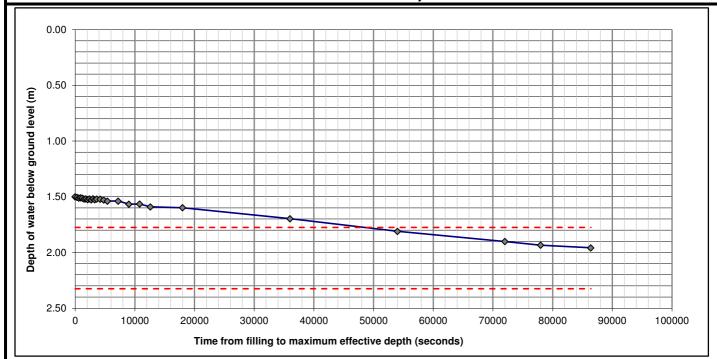
Trinity Fields Ground Investigation Report



APPENDIX D – SOIL INFILTRATION TEST RESULTS

Environmental Consultancy Ground Engineering Services

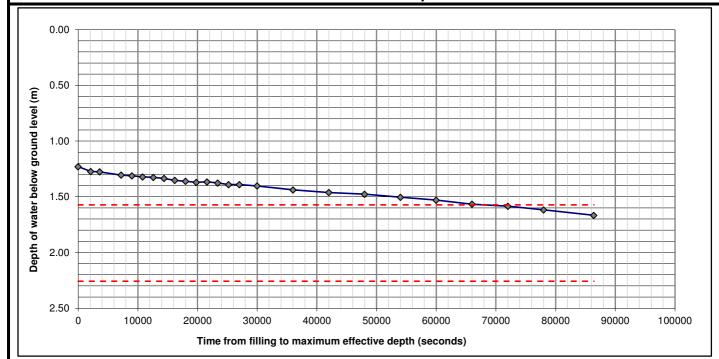
DATE:	02/06/2020
PROJECT No:	A110489-6-1
PROJECT NAME:	Trinity Fields
CLIENT:	CCBC
TRIAL PIT ID:	SA01
TEST NUMBER:	1



	l/	Distance to	PIT LENGTH (m):	2.10	Pit	constructi	on
Time Elapsed	Time Elapsed (mins)	water surface from ground	PIT WIDTH (m):	0.60			
(s)	(111115)	level (m)	PIT DEPTH (m):	2.60	<u> </u>		
0	0.00	1.590		IN	PUT PARAMETERS:		
300	5.00	1.608			Total volume of pit	(m ³)	1.27
600	10.00	1.624	Pit volume between	75% and 25% de	epths = L x W x ½D	(m ³)	0.64
900	15.00	1.654			Effective depth of Pit	(m)	1.01
1200	20.00	1.685	Proportio	on of pit volume o	occupied by gravel solids	(0-1)	0.00
1500	25.00	1.708		Maximum po	otential volume of Water	(m ³)	1.27
1800	30.00	1.732		•	75% effective depth (p ₇₅)	(m)	0.25
2100	35.00	1.772	Level o	f water in pit at 2	25% effective depth (p ₂₅)	(m)	0.76
2400	40.00	1.790					
2700	45.00	1.809	Effective volume between			(m ³) (m ²)	0.64
3000	50.00	1.813	Surface ar	Surface area of pit up to 50% effective depth (A _{p50})			3.99
3300	55.00	1.834					
3600	60.00	1.839		Time at 7	75% effective depth (p ₇₅)	(s)	3751
5400	90.00	1.881			25% effective depth (p ₂₅)	(s)	42896
7200	120.00	1.943	Time for outflow for	75% and 25% ef	ffective depth (Tp75-25)	(s)	39145
9000	150.00	1.982			OUTPUT:		
10800	180.00	2.019	SOIL INFILTRATION R	ATE (f)	V _{p75 - 25}	(m/c)	4.08E-06
14400	240.00	2.067	SOIL IMPLIFICATION IN	AIE (1)	A _{p50} x T _{p75 - 25}	(m/s)	4.UOE-UU
18000	300.00	2.115					
21600	360.00	2.160	WATER INPUT:	1000	in L		
25200	420.00	2.197	GEOLOGY OF TEST SEC	CTION:			
32400	540.00	2.260	Glaciofouvial	Deposits compris	ing gravelly clayey SAND	or sandy gra	avelly CLAY.
39600	660.00	2.333					
46800	780.00	2.365					
54000	900.00	2.413			Compiled by:		SB
	1				Checked by:		KW
After BRE Digest	365, Soakaway I	Design, 2016					Page 1 of 1

Environmental Consultancy Ground Engineering Services

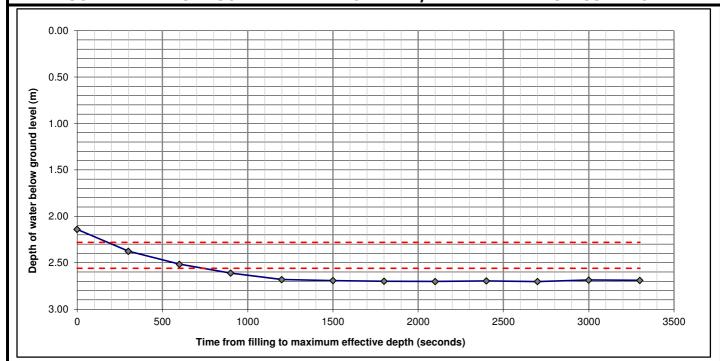
DATE:	03/06/2020
PROJECT No:	A110489-6-1
PROJECT NAME:	Trinity Fields
CLIENT:	CCBC
TRIAL PIT ID:	SA01
TEST NUMBER:	2



		Distance to	PIT LENGTH (m):	2.10	Pit	construct	ion
Time Elapsed	Time Elapsed	water surface	PIT WIDTH (m):	0.60			
(s)	(mins)	from ground level (m)	PIT DEPTH (m):	2.60			
0	0.00	1.500			PUT PARAMETERS:		
300	5.00	1.505			Total volume of pit	(m ³)	1.39
600	10.00	1.512	Pit volume betwee	en 75% and 25% de	epths = L x W x ½D	(m ³)	0.69
900	15.00	1.509			Effective depth of Pit	(m)	1.10
1200	20.00	1.512	Propo	rtion of pit volume	occupied by gravel solids	(0-1)	0.00
1500	25.00	1.520	·	Maximum p	otential volume of Water	(m ³)	1.39
1800	30.00	1.519	Leve	of water in pit at 7	'5% effective depth (p ₇₅)	(m)	0.28
2100	35.00	1.525	Leve	of water in pit at 2	25% effective depth (p ₂₅)	(m)	0.83
2400	40.00	1.519					
2700	45.00	1.527			depth Vp75-25 = V x Pg	(m ³)	0.69
3000	50.00	1.517	Surface	Surface area of pit up to 50% effective depth (A _{p50}) (m ²)			
3300	55.00	1.526					
3600	60.00	1.521			'5% effective depth (p ₇₅)	(s)	48455
4200	70.00	1.522		Time at 2	25% effective depth (p ₂₅)	(s)	#N/A
4800	80.00	1.529	Time for outflow for	or 75% and 25% ef	fective depth (Tp75-25)	(s)	#N/A
5400	90.00	1.539			OUTPUT:		
7200	120.00	1.539	SOIL INFILTRATION	DATE (f)	V _{p75 - 25}	(m/s)	#N/A
9000	150.00	1.566	SOIL INFILIRATION	I KATE (I)	A _{p50} x T _{p75 - 25}	(111/5)	#N/A
10800	180.00	1.565					
12600	210.00	1.590	WATER INPUT:	1000	in L		
18000	300.00	1.598	GEOLOGY OF TEST S	ECTION:			
36000	600.00	1.696	Glaciofouvi	al Deposits compris	ing gravelly clayey SAND	or sandy g	ravelly CLAY.
54000	900.00	1.810					
72000	1200.00	1.901					
78000	1300.00	1.934			Compiled by:		SB
86400	1440.00	1.958			Checked by:		KW
After BRE Digest	365, Soakaway I	Design, 2016					Page 1 of 1

Environmental Consultancy Ground Engineering Services

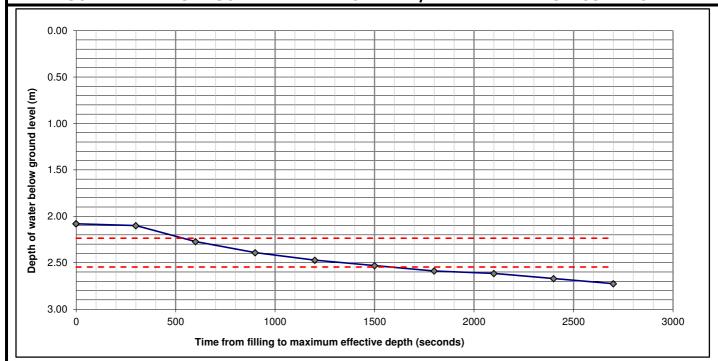
DATE:	04/06/2020
PROJECT No:	A110489-6-1
PROJECT NAME:	Trinity Fields
CLIENT:	CCBC
TRIAL PIT ID:	SA01
TEST NUMBER:	3



		Distance to	PIT LENGTH (m):	2.10	Pit	construct	ion		
Time Elapsed	Time Elapsed	water surface	PIT WIDTH (m):	0.60					
(s)	(mins)	from ground level (m)	PIT DEPTH (m):	2.60					
0	0.00	1.230	. ,	IN	PUT PARAMETERS:				
2100	35.00	1.273		Total volume of pit (m ³) 1.73					
3600	60.00	1.276	Pit volume between	n 75% and 25% de	epths = L x W x ½D	(m ³)	0.86		
7200	120.00	1.305			Effective depth of Pit	(m)	1.37		
9000	150.00	1.312	Propor	tion of pit volume	occupied by gravel solids	(0-1)	0.00		
10800	180.00	1.322		Maximum p	otential volume of Water	(m ³)	1.73		
12600	210.00	1.326	Level	of water in pit at 7	'5% effective depth (p ₇₅)	(m)	0.34		
14400	240.00	1.336	Level	of water in pit at 2	25% effective depth (p ₂₅)	(m)	1.03		
16200	270.00	1.353							
18000	300.00	1.361	Effective volume bety	ween 75% & 25%	depth Vp75-25 = V x Pg	(m^3)	0.86		
19800	330.00	1.371	Surface	Surface area of pit up to 50% effective depth (A_{p50}) (r					
21600	360.00	1.367							
23400	390.00	1.376			'5% effective depth (p ₇₅)	(s)	67961		
25200	420.00	1.391		Time at 2	25% effective depth (p ₂₅)	(s)	#N/A		
27000	450.00	1.391	Time for outflow fo	r 75% and 25% ef	fective depth (Tp75-25)	(s)	#N/A		
30000	500.00	1.403			OUTPUT:				
36000	600.00	1.438	SOIL INFILTRATION	DATE (6)	V _{p75 - 25}	(m/s)	#N/A		
42000	700.00	1.462	SOIL INFILIRATION	KAIE (I)	A _{p50} x T _{p75 - 25}	(111/5)	#N/A		
48000	800.00	1.477							
54000	900.00	1.505	WATER INPUT:	1000	in L				
60000	1000.00	1.530	GEOLOGY OF TEST SI	ECTION:					
66000	1100.00	1.567	Glaciofouvia	l Deposits compris	ing gravelly clayey SAND	or sandy g	ravelly CLAY.		
72000	1200.00	1.584							
78000	1300.00	1.617							
86400	1440.00	1.666			Compiled by:		SB		
					Checked by:				
After BRE Digest	365, Soakaway I	Design, 2016			•		Page 1 of 1		

Environmental Consultancy Ground Engineering Services

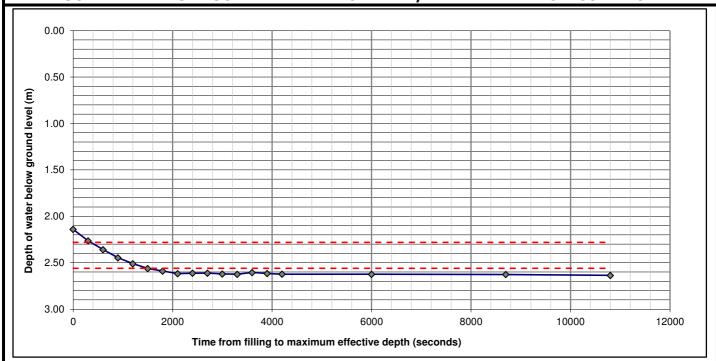
DATE:	03/06/2020
PROJECT No:	A110489-6-1
PROJECT NAME:	Trinity Fields
CLIENT:	CCBC
TRIAL PIT ID:	SA02
TEST NUMBER:	1



		Distance to	PIT LENGTH (m):	2.20	Pit	constructi	on		
Time Elapsed	Time Elapsed	water surface	PIT WIDTH (m):	0.60					
(s)	(mins)	from ground level (m)	PIT DEPTH (m):	2.70					
0	0.00	2.140	1 2 2 2 111 ()	-	PUT PARAMETERS:				
300	5.00	2,376			Total volume of pit	(m ³)	0.74		
600	10.00	2,515	Pit volume betwee	n 75% and 25% de	epths = L x W x ½D	(m ³)	0.37		
900	15.00	2.611			Effective depth of Pit	(m)	0.56		
1200	20.00	2.681	Propo	rtion of pit volume	occupied by gravel solids	(0-1)	0.00		
1500	25.00	2.692	·	Maximum p	otential volume of Water	(m ³)	0.74		
1800	30.00	2.699	Leve	of water in pit at 7	'5% effective depth (p ₇₅)	(m)	0.14		
2100	35.00	2.702	Leve	of water in pit at 2	5% effective depth (p ₂₅)	(m)	0.42		
2400	40.00	2.696							
2700	45.00	2.702	Effective volume bet	ween 75% & 25%	depth Vp75-25 = V x Pg	(m ³)	0.37		
3000	50.00	2.686	Surface	Surface area of pit up to 50% effective depth (A_{p50}) (m^2)					
3300	55.00	2.690							
					'5% effective depth (p ₇₅)	(s)	178		
				Time at 25% effective depth (p_{25}) (s) 7					
			Time for outflow for	Time for outflow for 75% and 25% effective depth (Tp75-25) (s) 562					
					OUTPUT:				
			SOIL INFILTRATION	RATE (f)	V _{p75 - 25} A _{p50} x T _{p75 - 25}	(m/s)	2.28E-04		
			WATER INPUT:	900	in L				
					in L	_			
			GEOLOGY OF TEST S		rising gravelly clayey GRA	VEL or grav	ally CLAV		
			Glaciolou	viai Deposits compi	ilsilig gravelly clayey GRA	VEL OI GIAV	elly CLAT.		
					Compiled by:		SB		
		\vdash			Checked by:		KW		
	365, Soakaway I	Danian 2016			criecked by:		Page 1 of 1		

Environmental Consultancy Ground Engineering Services

DATE:	03/06/2020
PROJECT No:	A110489-6-1
PROJECT NAME:	Trinity Fields
CLIENT:	CCBC
TRIAL PIT ID:	SA02
TEST NUMBER:	1



		Distance to	PIT LENGTH (m):	2.20	Pit	construct	ion
Time Elapsed	Time Elapsed	water surface	PIT WIDTH (m):	0.60			
(s)	(mins)	from ground level (m)	PIT DEPTH (m):	2,70			
0	0.00	2.080	111 521 111 (111)1	-	PUT PARAMETERS:		
	0.00	2.080			Total volume of pit	(m ³)	0.82
300	5.00	2.100	Pit volume betwee	en 75% and 25% de	epths = L x W x ½D	(m ³)	0.41
600	10.00	2,273	The volume beares	, 5,0 aa 25,0 a.	Effective depth of Pit	(m)	0.62
900	15.00	2.391	Propo	rtion of pit volume	occupied by gravel solids	(0-1)	0.00
1200	20.00	2.472			otential volume of Water	(m ³)	0.82
1500	25.00	2.531	Leve	l of water in pit at 7	'5% effective depth (p ₇₅)	(m)	0.16
1800	30.00	2.589	Leve	l of water in pit at 2	5% effective depth (p ₂₅)	(m)	0.47
2100	35.00	2.616					
2400	40.00	2.670	Effective volume bet	tween 75% & 25%	depth Vp75-25 = V x Pg	(m ³)	0.41
2700	45.00	2.725	Surface	Surface area of pit up to 50% effective depth (A_{p50}) (
					'5% effective depth (p ₇₅)	(s)	534
			Time at 25% effective depth (p ₂₅) (s) 1575				
			Time for outflow f	or 75% and 25% ef	fective depth (Tp75-25)	(s)	1040
					OUTPUT:		
			SOIL INFILTRATION	I RATE (f)	V _{p75 - 25} A _{p50} x T _{p75 - 25}	(m/s)	1.29E-04
			WATER INPUT:	900	in L		
			GEOLOGY OF TEST S				
			Glaciofou	ıvial Deposits comp	rising gravelly clayey GRA	VEL or grav	elly CLAY.
					Compiled by:		SB
					Checked by:		
After BRE Digest	365, Soakaway I	Design, 2016					Page 1 of 1

Environmental Consultancy Ground Engineering Services

DATE:	03/06/2020
PROJECT No:	A110489-6-1
PROJECT NAME:	Trinity Fields
CLIENT:	CCBC
TRIAL PIT ID:	SA02
TEST NUMBER:	1

		Distance to	PIT LENGTH (m):	2.20	Pit	constructi	on
Time Elapsed	Time Elapsed	water surface	PIT WIDTH (m):	0.60			
(s)	(mins)	from ground level (m)	PIT DEPTH (m):	2.70			
0	0.00	2.140		IN	PUT PARAMETERS:		
300	5.00	2.264			Total volume of pit	(m ³)	0.74
600	10.00	2.359	Pit volume betwee	n 75% and 25% de	epths = L x W x ½D	(m ³)	0.37
900	15.00	2.446			Effective depth of Pit	(m)	0.56
1200	20.00	2.510	Propo	rtion of pit volume	occupied by gravel solids	(0-1)	0.00
1500	25.00	2.562		Maximum p	otential volume of Water	(m ³)	0.74
1800	30.00	2.590	Leve	of water in pit at 7	'5% effective depth (p ₇₅)	(m)	0.14
2100	35.00	2.617	Leve	of water in pit at 2	25% effective depth (p ₂₅)	(m)	0.42
2400	40.00	2.613					
2700	45.00	2.612	Effective volume bet	Effective volume between 75% & 25% depth Vp75-25 = V x Pg			
3000	50.00	2.620	Surface	Surface area of pit up to 50% effective depth (A _{p50}) (m ²			
3300	55.00	2.623					
3600	60.00	2.605		Time at 7	'5% effective depth (p ₇₅)	(s)	352
3900	65.00	2.615		Time at 25% effective depth (p_{25}) (s)			
4200	70.00	2.623	Time for outflow for	or 75% and 25% ef	fective depth (Tp75-25)	(s)	1139
6000	100.00	2.623			OUTPUT:		
8700	145.00	2.627	SOIL INFILTRATION	DATE (f)	V _{p75 - 25}	(m/s)	1.12E-04
10800	180.00	2.636	SOIL INFILIRATION	RATE (I)	A _{p50} x T _{p75 - 25}	(m/s)	1.12E-04
			WATER INPUT:	1000	in L		
			GEOLOGY OF TEST S				
			Glaciofou	vial Deposits comp	rising gravelly clayey GRA	VEL or grav	elly CLAY.
					Compiled by:		SB
					Checked by:		30
After BRE Digest	365, Soakaway I	Design, 2016			Checked by:		Page 1 of 1

Trinity Fields Ground Investigation Report

APPENDIX E – GEOTECHNICAL LABORATORY TEST RESULTS

Contract Number: 48908

Client Ref: **A110489-6-1**Client PO: **C20/362**

Report Date: 16-07-2020

Client WYG Group

5th Floor
Longcross Court
47 Newport Road
Cardiff
CF24 0AD

Contract Title: Trinity Fields, Caerphilly

For the attention of: Nicholas Bool

Date Received: **22-06-2020**Date Completed: **16-07-2020**

Test Description	Qty
Moisture Content	13
BS 1377:1990 - Part 2 : 3.2 - * UKAS	
4 Point Liquid & Plastic Limit	13
BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	
PSD Wet Sieve method	17
BS 1377:1990 - Part 2 : 9.2 - * UKAS	
PSD: Sedimentation by pipette carried out with Wet Sieve (Wet Sieve must also be selected)	5
BS 1377:1990 - Part 2 : 9.4 - * UKAS	
BRE Suite B Greenfield Site (pyrite present)	12
includes pH, water & acid soluble sulphate and total sulphur	
BRE - BR279 - @ Non Accredited Test	
BRE Suite D Brownfield Site (pyrite present)	1
includes pH, water & acid soluble sulphate, total sulphur, magnesium, chloride and nitrate	
BRE - BR279 - @ Non Accredited Test	

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager)
Sean Penn (Administrative/Accounts Assistant) - Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Contract Number: 48908

Test Description	Qty
Dry Den/MC (2.5kg Rammer Method 1 Litre Mould) BS 1377:1990 - Part 4: 3.3 - * UKAS	4
Disposal of samples for job	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories

Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Sean Penn (Administrative/Accounts Assistant) - Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd

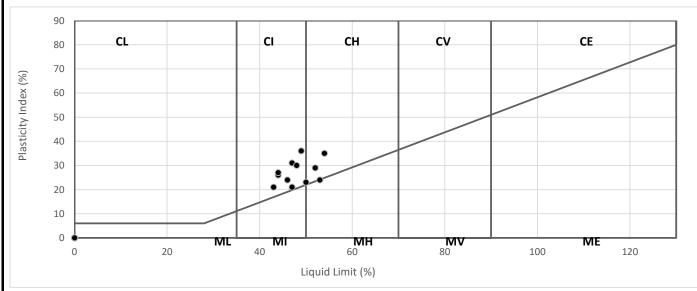
Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)				
Contract Number	48908				
Site Name	Trinity Fields, Caerphilly				
Date Tested	07/07/2020				
	DESCRIPTIONS				

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		n)	Descriptions
BH01	1	В	0.20	-	0.80	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)
BH01	3	В	1.20	-	2.20	Brown silty fine to coarse sandy clayey fine to coarse GRAVEL
BH01	4	В	2.20	-	3.00	Brown fine to coarse gravelly sandy clayey SILT
BH02	2	В	1.20	-	2.00	Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with cobbles)
BH03	4	В	3.20	-	3.65	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)
BH04	1	В	0.20	-	0.80	Brown slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL
BH04	3	В	1.20	-	1.70	Brown silty clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)
BH04	4	В	1.70	-	2.70	Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with cobbles)
BH05	1	В	0.30	-	0.80	Brown slightly sandy silty clayey fine to coarse GRAVEL
BH05	3	В	1.20	-	2.20	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL
BH05	4	В	2.20	-	3.20	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)
BH05A	1	В	0.20	-	1.20	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)
BH05A	4	В	3.00	-	3.70	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

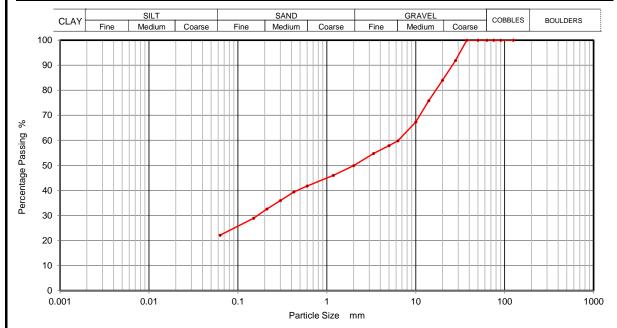
Operators	Checked	16/07/2020	Wayne Honey (Administrative/Quality Assistant)
Clayton Jenkins	Approved	16/07/2020	Paul Evans (Quality/Technical Manager)



GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	48908	
Project Location	Trinity Fields, Caerphilly	
Date Tested	07/07/2020	

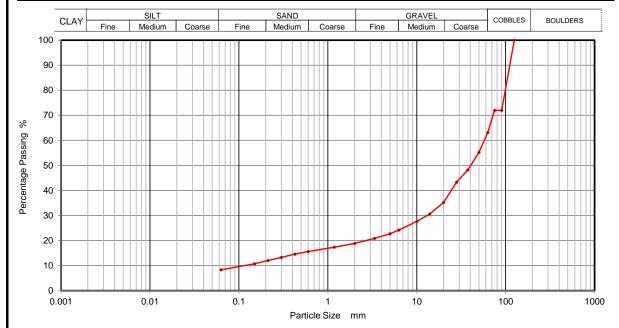
Sample/Hole Reference	Sample Number	Sample Type	Do	epth (n	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
BH01	1	В	0.20	-	0.80	39	52	23	29	15	CH High Plasticity
BH01	3	В	1.20	-	2.20	11	43	22	21	53	CI Intermediate Plasticity
BH01	4	В	2.20	-	3.00	45	53	29	24	38	MH High Plasticity
BH02	2	В	1.20	-	2.00	26	47	16	31	22	CI Intermediate Plasticity
BH03	4	В	3.20	-	3.65	27	49	13	36	22	CI Intermediate Plasticity
BH04	1	В	0.20	-	0.80	13		NP		9	
BH04	3	В	1.20	-	1.70	32	47	26	21	29	CI Intermediate Plasticity
BH04	4	В	1.70	-	2.70	37	50	27	23	47	CI/H Inter/High Plasticity
BH05	1	В	0.30	-	0.80	35	48	18	30	31	CI Intermediate Plasticity
BH05	3	В	1.20	-	2.20	29	54	19	35	23	CH High Plasticity
BH05	4	В	2.20	-	3.20	25	44	18	26	26	CI Intermediate Plasticity
BH05A	1	В	0.20	-	1.20	30	46	22	24	28	CI Intermediate Plasticity
BH05A	4	В	3.00	-	3.70	28	44	17	27	33	CI Intermediate Plasticity
				-							
				-			'				
				-			'				
				-			'				
				-							
				-							
				-							
				-							
				-							
				-							
	!	!	'	-		<u> </u>	'		'		

Symbols: NP : Non Plastic # : Liquid Limit and Plastic Limit Wet Sieved


PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	16/07/2020	Wayne Honey (Administrative/Quality Assistant)
Clayton Jenkins	Approved	16/07/2020	Paul Evans (Quality/Technical Manager)

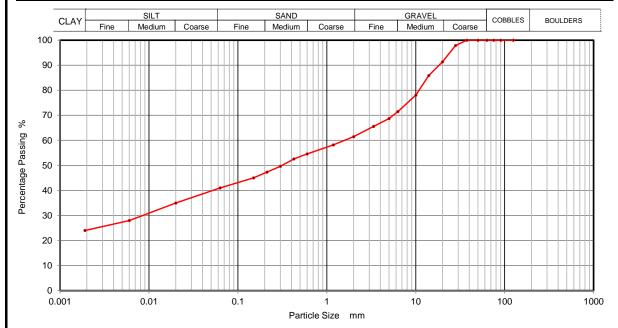
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH01
Site Name	Trinity Fields, Caerphilly	Sample No.	2
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.80
	Blown sitty/dayey line to coarse sarrdy line to coarse GNAVEL	Depth Base	1.20
Date Tested	14/07/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	92		
20	84		
14	76		
10	67		
6.3	60		
5	58		
3.35	55		
2	50		
1.18	46		
0.6	42		
0.425	39		
0.3	36		
0.212	33		
0.15	29		
0.063	22		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	50	
Sand	28	
Silt and Clay	22	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

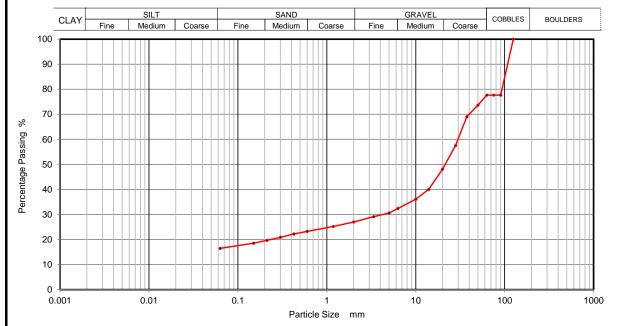
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH01
Site Name	Trinity Fields, Caerphilly	Sample No.	1
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with	Depth Top	0.20
	cobbles)	Depth Base	0.80
Date Tested	13/07/2020	Sample Type	В


Sie	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	72			
75	72			
63	63			
50	55			
37.5	48			
28	43			
20	35			
14	31			
10	28			
6.3	24			
5	23			
3.35	21			
2	19			
1.18	17			
0.6	16			
0.425	15			
0.3	13		•	
0.212	12			
0.15	11			
0.063	8			

Sample Proportions	% dry mass	
Cobbles	37	
Gravel	44	
Sand	11	
Silt and Clay	8	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Grans

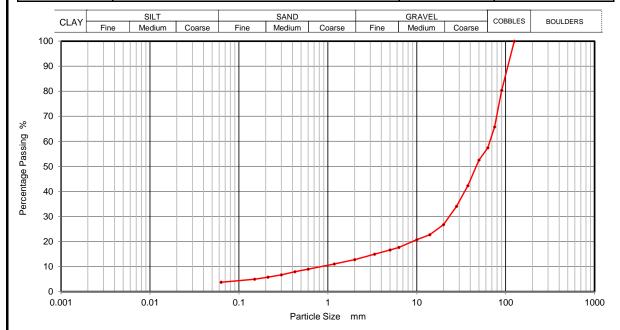
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	BH01
Site Name	Trinity Fields, Caerphilly	Sample No.	3
Soil Description	Brown silty fine to coarse sandy clayey fine to coarse GRAVEL	Depth Top	1.20
	Blown sitty line to coalse sality dayey line to coalse GRAVEL	Depth Base	2.00
Date Tested	13/07/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	35
90	100	0.0060	28
75	100	0.0020	24
63	100		
50	100		
37.5	100		
28	98		
20	91		
14	86		
10	78		
6.3	71		
5	69		
3.35	66		
2	61		
1.18	58		
0.6	55		
0.425	53		
0.3	50		
0.212	47		
0.15	45		
0.063	41		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	39	
Sand	20	
Silt	17	
Clay	24	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

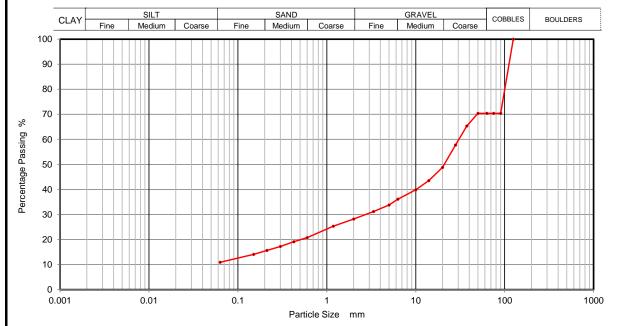
CCTI	PARTICLE SIZE DISTRIBUTION		48908
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH02
Site Name	Trinity Fields, Caerphilly	Sample No.	3
Soil Description	Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with cobbles)	Depth Top	1.20
		Depth Base	2.20
Date Tested	13/07/2020	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	78		
75	78		
63	78		
50	74		
37.5	69		
28	58		
20	48		
14	40		
10	36		
6.3	32		
5	31		
3.35	29		
2	27		
1.18	25		
0.6	23		
0.425	22		
0.3	21		_
0.212	20		
0.15	19		
0.063	16		

Sample Proportions % dry mass	
Cobbles	22
Gravel	51
Sand	11
Silt and Clay	16

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

PARTICLE SIZE DISTRIBUTION	Contract Number	48908	
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	ВН03
Site Name	Trinity Fields, Caerphilly	Sample No.	1
Soil Description	Brown slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	0.20
		Depth Base	0.80
Date Tested	14/07/2020	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	80		
75	66		
63	57		
50	53		
37.5	42		
28	34		
20	27		
14	23		
10	21		
6.3	18		
5	17		
3.35	15		
2	13		
1.18	11		
0.6	9		
0.425	8		
0.3	7		_
0.212	6		
0.15	5		
0.063	4		

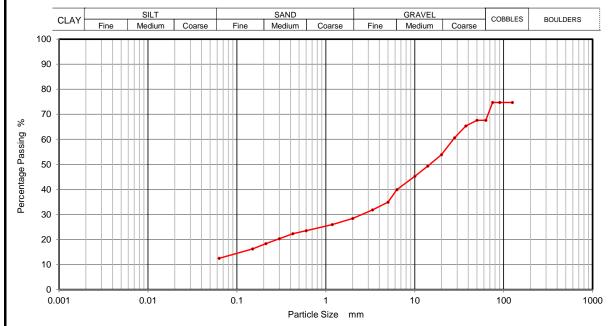
Sample Proportions	% dry mass	
Cobbles	43	
Gravel	44	
Sand	9	
Silt and Clay	4	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		48908
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	ВН03
Site Name	Trinity Fields, Caerphilly	Sample No.	2
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	1.20
		Depth Base	1.65
Date Tested	13/07/2020	Sample Type	В

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	70		
75	70		
63	70		
50	70		
37.5	65		
28	58		
20	49		
14	44		
10	40		
6.3	36		
5	34		
3.35	31		
2	28		
1.18	25		
0.6	21		
0.425	19		
0.3	17		•
0.212	16		
0.15	14		
0.063	11		

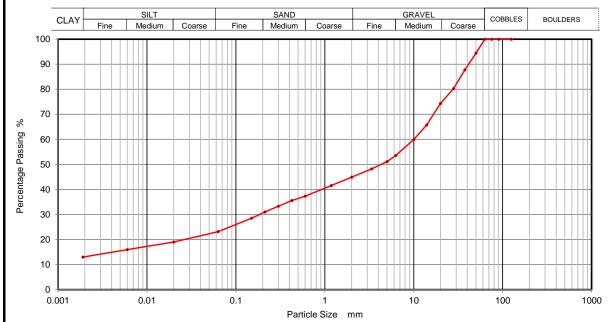
Sample Proportions	% dry mass	
Cobbles	30	
Gravel	42	
Sand	17	
Silt and Clay	11	


Preparation and testing in accordance with BS1377 unless noted below

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

2788

PARTICLE SIZE DISTRIBUTION	Contract Number	48908	
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	ВН03
Site Name	Trinity Fields, Caerphilly	Sample No.	4
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	3.20
		Depth Base	3.65
Date Tested	13/07/2020	Sample Type	В


Sie	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	75		
90	75		
75	75		
63	68		
50	68		
37.5	65		
28	61		
20	54		
14	49		
10	45		
6.3	40		
5	35		
3.35	32		
2	28		
1.18	26		
0.6	24		
0.425	22		
0.3	20		
0.212	18		
0.15	16		
0.063	12		

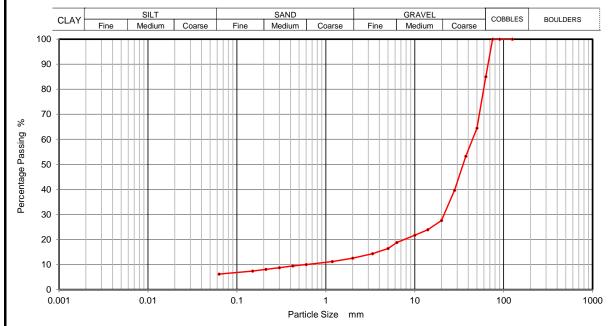
Sample Proportions	% dry mass	
Cobbles	32	
Gravel	40	
Sand	16	
Silt and Clay	12	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	48908
GOIL		Borehole/Pit No.	ВН03
Site Name	Trinity Fields, Caerphilly	Sample No.	6
Soil Description	Brown silty clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	4.20
		Depth Base	4.60
Date Tested	13/07/2020	Sample Type	В

Siev	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	19
90	100	0.0060	16
75	100	0.0020	13
63	100		
50	94		
37.5	88		
28	80		
20	74		
14	66		
10	60		
6.3	54		
5	51		
3.35	48		
2	45		
1.18	42		
0.6	37		
0.425	36		
0.3	33		<u> </u>
0.212	31		
0.15	29		
0.063	23		

Sample Proportions	% dry mass
Cobbles	0
Gravel	55
Sand	22
Silt	10
Clay	13


Preparation and testing in accordance with BS1377 unless noted below

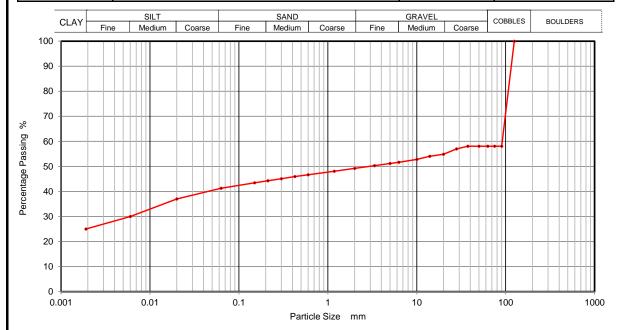
Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

2788

PARTICLE SIZE DISTRIBUTION	Contract Number	48908	
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH04
Site Name	Trinity Fields, Caerphilly	Sample No.	1
Soil Description	Brown slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	0.20
		Depth Base	0.80
Date Tested	13/07/2020	Sample Type	В

Sie	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	85		
50	64		
37.5	53		
28	40		
20	28		
14	24		
10	22		
6.3	19		
5	16		
3.35	14		
2	13		
1.18	11		
0.6	10		
0.425	9		
0.3	9		
0.212	8		
0.15	7		
0.063	6		

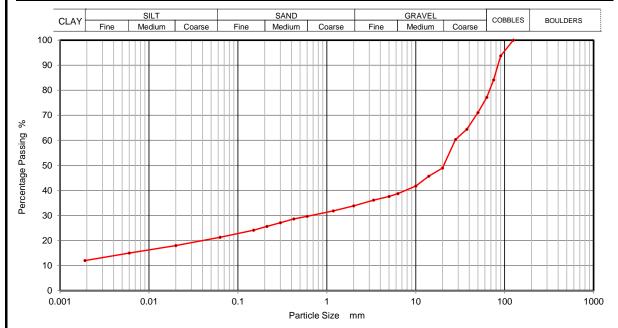
Sample Proportions	% dry mass	
Cobbles	15	
Gravel	72	
Sand	7	
Silt and Clay	6	


Preparation and testing in accordance with BS1377 unless noted below

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

2788

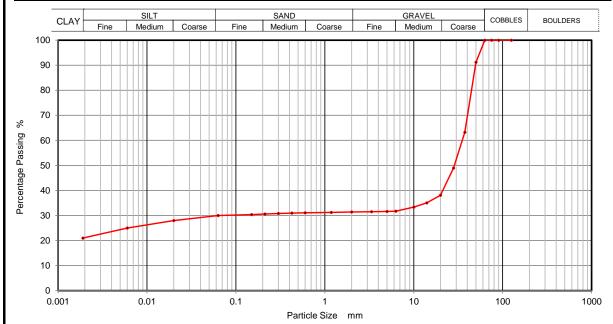
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	BH04
Site Name	Trinity Fields, Caerphilly	Sample No.	4
Soil Description	Brown sandy silty clayey fine to coarse GRAVEL (with cobbles)	Depth Top	1.70
		Depth Base	2.70
Date Tested	13/07/2020	Sample Type	В


Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0200	37	
90	58	0.0060	30	
75	58	0.0020	25	
63	58			
50	58			
37.5	58			
28	57			
20	55			
14	54			
10	53			
6.3	52			
5	51			
3.35	50			
2	49			
1.18	48			
0.6	47			
0.425	46			
0.3	45			
0.212	44			
0.15	43			
0.063	41			

Sample Proportions	% dry mass	
Cobbles	42	
Gravel	9	
Sand	8	
Silt	16	
Clay	25	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Grons

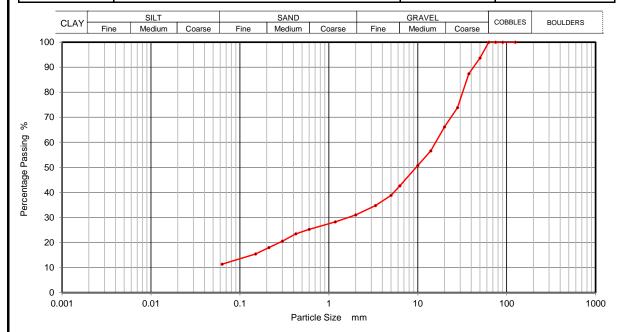
PARTICLE SIZE DISTRIBUTION	Contract Number	48908	
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	BH04
Site Name	Trinity Fields, Caerphilly	Sample No.	3
Soil Description	Brown silty clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	1.20
		Depth Base	1.70
Date Tested	13/07/2020	Sample Type	0


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	18
90	94	0.0060	15
75	84	0.0020	12
63	77		
50	71		
37.5	64		
28	60		
20	49		
14	46		
10	42		
6.3	39		
5	38		
3.35	36		
2	34		
1.18	32		
0.6	30		
0.425	29		
0.3	27		<u> </u>
0.212	26		
0.15	24		
0.063	21		

Sample Proportions	% dry mass	
Cobbles	23	
Gravel	43	
Sand	13	
Silt	9	
Clay	12	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	ED P Grons

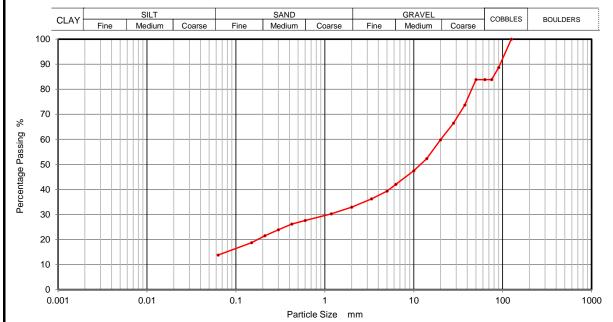
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GJIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	BH05
Site Name	Trinity Fields, Caerphilly	Sample No.	1
Soil Description	Brown slightly sandy silty clayey fine to coarse GRAVEL	Depth Top	0.30
	Blown slightly sality slity dayey line to coalse GRAVEE	Depth Base	0.80
Date Tested	13/07/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	28
90	100	0.0060	25
75	100	0.0020	21
63	100		
50	91		
37.5	63		
28	49		
20	38		
14	35		
10	33		
6.3	32		
5	32		
3.35	32		
2	31		
1.18	31		
0.6	31		
0.425	31		
0.3	31		
0.212	31		
0.15	30		
0.063	30		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	69	
Sand	1	
Silt	9	
Clay	21	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

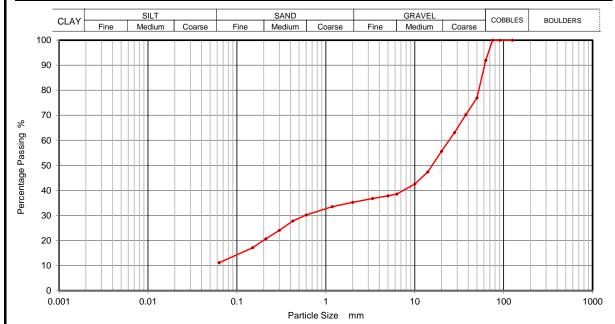
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	ВН05
Site Name	Trinity Fields, Caerphilly	Sample No.	3
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.20
	Blown sitty/dayey line to coarse sarrdy line to coarse GNAVEL	Depth Base	2.20
Date Tested	13/07/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	94		
37.5	87		
28	74		
20	66		
14	57		
10	51		
6.3	43		
5	39		
3.35	35		
2	31		
1.18	28		
0.6	25		
0.425	23		
0.3	21		
0.212	18		
0.15	15		
0.063	11		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	69	
Sand	20	
Silt and Clay	11	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

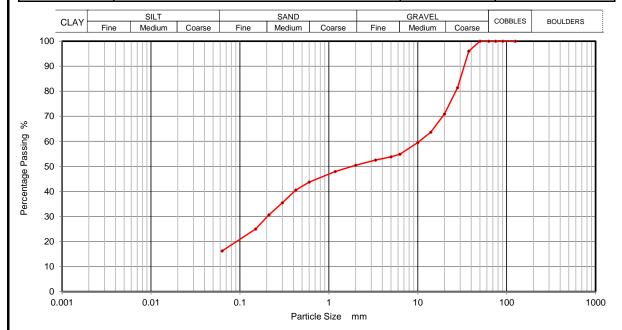
CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	48908
GOIL		Borehole/Pit No.	BH05
Site Name	Trinity Fields, Caerphilly	Sample No.	4
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with	Depth Top	2.20
3011 Description	cobbles)	Depth Base	3.20
Date Tested	14/07/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	89		
75	84		
63	84		
50	84		
37.5	74		
28	66		
20	60		
14	52		
10	47		
6.3	42		
5	39		
3.35	36		
2	33		
1.18	30		
0.6	28		
0.425	26		
0.3	24		
0.212	22		
0.15	19		
0.063	14		

Sample Proportions	% dry mass	
Cobbles	16	
Gravel	51	
Sand	19	
Silt and Clay	14	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Grans

PARTICLE SIZE DISTRIBUTION	Contract Number	48908	
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH05A
Site Name	Trinity Fields, Caerphilly	Sample No.	1
Soil Description	Soil Description Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	0.20
3011 Description		Depth Base	1.20
Date Tested	13/07/2020	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	92		
50	77		
37.5	70		
28	63		
20	56		
14	47		
10	43		
6.3	39		
5	38		
3.35	37		
2	35		
1.18	34		
0.6	30		
0.425	28		
0.3	24		
0.212	21		
0.15	17		
0.063	11		

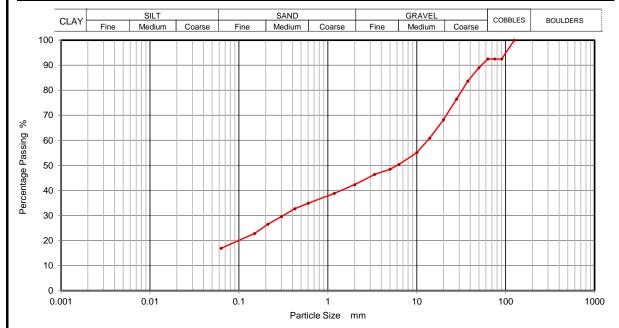
Sample Proportions	% dry mass	
Cobbles	8	
Gravel	57	
Sand	24	
Silt and Clay	11	

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	48908
GOIL		Borehole/Pit No.	BH05A
Site Name	Trinity Fields, Caerphilly	Sample No.	2
Soil Description	Down Site (shows fire to account fire to accou	Depth Top	1.20
Soil Description Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Base	2.20	
Date Tested	13/07/2020	Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	81		
20	71		
14	64		
10	60		
6.3	55		
5	54		
3.35	53		
2	50		
1.18	48		
0.6	44		
0.425	41		
0.3	35		_
0.212	31		
0.15	25		
0.063	16		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	50	
Sand	34	
Silt and Clay	16	


Preparation and testing in accordance with BS1377 unless noted below

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

2788

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48908
GJIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH05A
Site Name	Trinity Fields, Caerphilly	Sample No.	4
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL (with	Depth Top	3.00
3011 Description	cobbles)	Depth Base	3.70
Date Tested	13/07/2020	Sample Type	В

Sie	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	92					
75	92					
63	92					
50	89					
37.5	84					
28	76					
20	68					
14	61					
10	55					
6.3	50					
5	48					
3.35	46					
2	42					
1.18	39					
0.6	35					
0.425	33					
0.3	30					
0.212	26					
0.15	23					
0.063	17					

Sample Proportions	% dry mass
Cobbles	8
Gravel	50
Sand	25
Silt and Clay	17

Preparation and testing in accordance with BS1377 unless noted below

Operators	Checked	15/07/2020	Wayne Honey	W. Honey
RO/MH	Approved	16/07/2020	Paul Evans	DP Gons

2788

CCTI	Certificate of Chemical Analysis	Contract Number	48908
GSIL	(BRE BR 279)	Client Reference	A110489-6-1
Client	WYG	Date Received	
Site Name	Trinity Fields	Date Started	26/06/2020
		Date Completed	16/07/2020
		No. of Samples	13

Hole Number	Sample Number	Sample Type	D	epth (m)	Acid Soluble Sulphate	Aqueous Extract Sulphate	Chloride Content	Ph Value	Total Sulphur	Magnesium	Nitrate
BH01	1	В	0.20	-	0.80	0.23	0.04		6.98	0.10		
BH01	2	В	0.80	-	1.20	0.33	0.04		7.02	0.14		
BH01	3	В	1.20	-	2.20	0.29	0.03		7.11	0.12		
BH02	1	В	0.30	-	1.20	0.27	0.04		7.20	0.11		
BH02	2	В	1.20	-	2.00	0.25	0.04		7.17	0.10		
BH03	1	В	0.20	-	0.80	0.27	0.04	NCP	7.20	0.12	<1	10-25
BH03	2	В	1.20	-	1.65	0.29	0.04		7.29	0.13		
BH04	1	В	0.20	-	0.80	0.33	0.03		7.35	0.14		
BH04	2	В	0.80	-	1.20	0.29	0.04		7.31	0.12		
BH05	1	В	0.30	-	0.80	0.33	0.04		7.17	0.14		
BH05	3	В	1.20	-	2.20	0.25	0.03		7.39	0.10		
BH05A	1	В	0.20	-	1.20	0.25	0.02		6.89	0.10		
WS04	2	В	0.60	-	0.90	0.35	0.04		7.26	0.15		
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								

 Key
 Reported As

 Acid Soluble Sulphate
 % SO₄

 Aqueous Extract Sulphate
 g/l SO₄

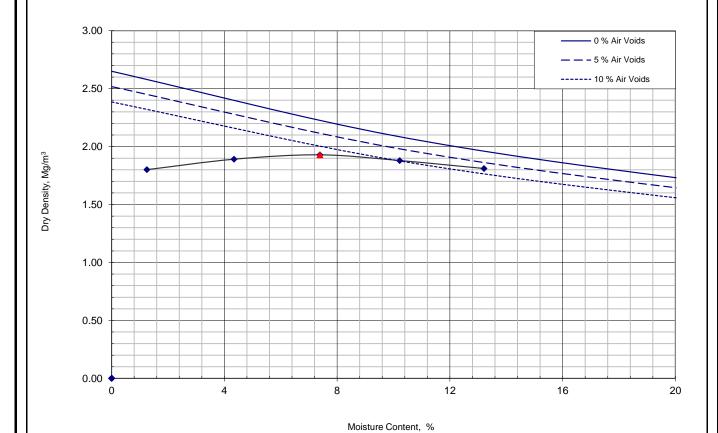
 Chloride Content (Semi)
 mg Cl/l

 PH Value
 @ 25°

 Total Sulphur
 % S

 Magnesium
 g/l SO₄

NO₃ mg/l

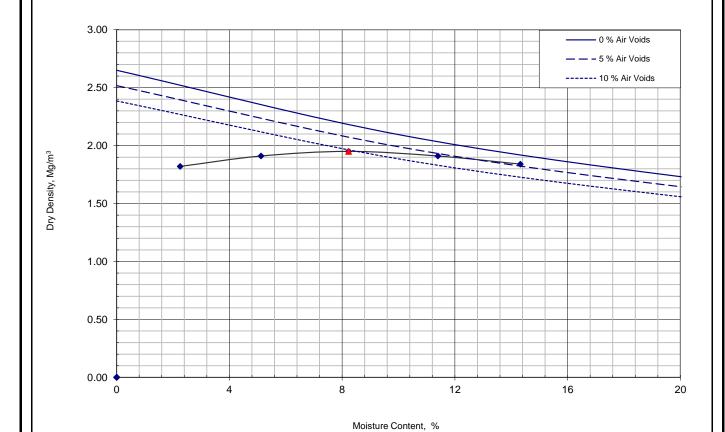

Nitrate

Remarks

NCP = No Chloride Present

Test Operator Checked and Authorised by			Paul Evans	SP Caro
Darren Bourne	Date	16/07/2020	r aui Evaiis	81 8145

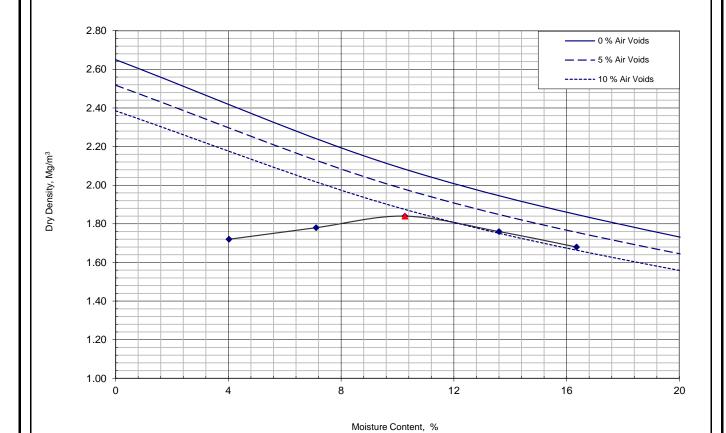
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48908
GSTL	BS 1377:Part 4:1990	Borehole / Pit No	BH02
Project Location	Trinity Fields, Caerphilly	Sample No	1
Date Tested	26/06/2020	Depth Top	0.30
Compaction Method	2.5 Kg Rammer	Depth Base	1.20
Compaction Clause	BS1377:Part 4:1990, Clause 3.3	Sample Type	В
Sample Description	Brown fine to coarse gravelly clayey SILT		


Compaction Point	1	2	3	4	5				
Moisture Content	1.3	4.3	7.4	10	13				
Bulk Density	1.82	1.97	2.07	2.07	2.05				
Dry Density	1.80	1.89	1.93	1.88	1.81				

Initial Moisture Content	10	%
Maximum Dry Density	1.93	Mg/m3
Optimum Moisture Content	7	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	18.4	%
Material Retained 20mm	5.75	%

Operators	Checked	15/07/2020	Emma Sharp	Sud
CA	Approved	16/07/2020	Paul Evans	DP Grons

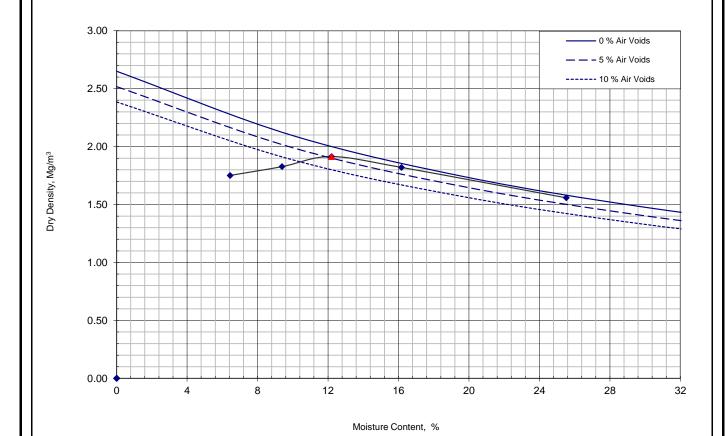
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48908
GSTL	BS 1377:Part 4:1990	Borehole / Pit No	BH04
Project Location	Trinity Fields, Caerphilly	Sample No	1
Date Tested	26/06/2020	Depth Top	0.20
Compaction Method	2.5 Kg Rammer	Depth Base	0.80
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	2.3	5.1	8.2	11	14				
Bulk Density	1.86	2.01	2.11	2.13	2.10				
Dry Density	1.82	1.91	1.95	1.91	1.84				

Initial Moisture Content	11	%
Maximum Dry Density	1.95	Mg/m3
Optimum Moisture Content	8	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	47	%
Material Retained 20mm	25	%

Operators	Checked	15/07/2020	Emma Sharp	Eud
CA	Approved	16/07/2020	Paul Evans	DP Gors

CCTI	Dry Density / Moisture Content Relationship	Contract Number	48908
GSTL	BS 1377:Part 4:1990	Borehole / Pit No	BH05
Project Location	Trinity Fields, Caerphilly	Sample No	1
Date Tested	26/06/2020	Depth Top	0.30
Compaction Method	2.5 Kg Rammer	Depth Base	0.80
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	4.0	7.1	10	14	16				
Bulk Density	1.79	1.91	2.03	2.00	1.95				
Dry Density	1.72	1.78	1.84	1.76	1.68				

Initial Moisture Content	14	%
Maximum Dry Density	1.84	Mg/m3
Optimum Moisture Content	10	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	37	%
Material Retained 20mm	25	%

Operators	Checked	15/07/2020	Emma Sharp	Eud
CA	Approved	16/07/2020	Paul Evans	DP Gions

CCTI	Dry Density / Moisture Content Relationship	Contract Number	48908
GSTL	BS 1377:Part 4:1990	Borehole / Pit No	BH05A
Project Location	Trinity Fields, Caerphilly	Sample No	1
Date Tested	26/06/2020	Depth Top	0.20
Compaction Method	2.5 Kg Rammer	Depth Base	1.20
Compaction Clause	BS1377:Part 4:1990, Clause 3.3	Sample Type	В
Sample Description			

Compaction Point	1	2	3	4	5				
Moisture Content	6.4	9.4	12	16	26				
Bulk Density	1.86	2.00	2.15	2.11	1.96				
Dry Density	1.75	1.83	1.91	1.82	1.56				

Initial Moisture Content	26	%
Maximum Dry Density	1.91	Mg/m3
Optimum Moisture Content	12	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	30	%
Material Retained 20mm	14	%

Operators	Checked	15/07/2020	Emma Sharp	Euch
CA	Approved	16/07/2020	Paul Evans	DP Gons

Trinity Fields Ground Investigation Report

APPENDIX F – CHEMICAL LABORATORY TEST RESULTS

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

> Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com

Website: www.alsenvironmental.co.uk

WYG Geo-Environment 5th Floor Longcross Court 47 Newport Road Cardiff CF24 0AD

Attention: Sophie Brookes

CERTIFICATE OF ANALYSIS

Date of report Generation: 28 June 2020

Customer: WYG Geo-Environment

200606-40 Sample Delivery Group (SDG): Your Reference: A110489-6-1 Location: Trinity Fields Report No: 556884

This report has been revised and directly supersedes 556881 in its entirety.

We received 14 samples on Saturday June 06, 2020 and 4 of these samples were scheduled for analysis which was completed on Sunday June 28, 2020. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan

Operations Manager

Validated

CERTIFICATE OF ANALYSIS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
22263935	SA01	ES1	0.20 - 0.30	02/06/2020
22263972	SA01	ES2	0.60 - 0.80	02/06/2020
22263978	SA01	ES3	1.20 - 1.40	02/06/2020
22263985	SA02	ES1	0.20 - 0.30	02/06/2020
22263990	SA02	ES2	0.30 - 0.60	02/06/2020
22263998	SA02	ES3	0.60 - 1.00	02/06/2020
22263947	WS02	ES2	0.15 - 0.35	05/06/2020
22263942	WS02	ES1	0.45 - 0.70	05/06/2020
22264005	WS03	ES1	0.15 - 0.35	05/06/2020
22264010	WS03	ES2	0.90 - 1.20	05/06/2020
22263953	WS07	ES1	0.20 - 0.40	05/06/2020
22263959	WS07	ES2	0.80 - 1.00	05/06/2020
22264018	WS08	ES1	0.30 - 0.50	05/06/2020
22263966	WS10	ES1	0.20 - 0.30	05/06/2020

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

12.6

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

556884

556881

CERTIFICATE OF ANALYSIS

A110489-6-1

Report Number:

Client Reference:

ALS

SDG:

200606-40

C20/344 Superseded Report: Location: Trinity Fields Order Number: Results Legend 22263959 22263935 22263942 Lab Sample No(s) X Test No Determination Possible Customer WS07 WS07 WS02 SAO Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ES1 ES1 ES1 ES2 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate 0.80-0.20 PR - Process Water 0.45 - 0.70 0.20 - 0.40 SA - Saline Water Depth (m) TE - Trade Effluent - 0.30 1.00 TS - Treated Sewage US - Untreated Sewage 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 1kg TUB with Handle (ALE260) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S Alkalinity Filtered as CaCO3 All NDPs: 0 Tests: 2 Χ Χ Ammoniacal Nitrogen All NDPs: 0 Tests: 2 Χ Χ Anions by Kone (soil) All NDPs: 0 Tests: 4 X X X Χ Anions by Kone (w) All NDPs: 0 Tests: 2 X Х All Asbestos ID in Solid Samples NDPs: 0 Tests: 4 Χ Χ Х Х Boron Water Soluble All NDPs: 0 Tests: 4 Χ Х Х X CEN Readings All NDPs: 0 Tests: 2 Х Х Chromium III All NDPs: 0 Tests: 4 Χ Χ Χ Χ Cyanide Comp/Free/Total/Thiocyanate All NDPs: 0 Tests: 6 X Χ X X X Χ Dissolved Metals by ICP-MS All NDPs: 0 Tests: 2 X X Dissolved Organic/Inorganic Carbon All NDPs: 0 Tests: 2 Х Х EPH CWG (Aliphatic) Filtered GC (W) All NDPs: 0 Tests: 2 Х Χ EPH CWG (Aromatic) Filtered GC (W) All NDPs: 0 Tests: 2 Х Х EPH CWG* All NDPs: 0 Tests: 4 Х Х Х Х GRO by GC-FID (S) All NDPs: 0 Tests: 4 Χ X Χ X

556884

556881

CERTIFICATE OF ANALYSIS

A110489-6-1

Report Number:

Client Reference:

$(\Delta I S)$	

SDG:

200606-40

Trinity Fields C20/344 Superseded Report: Location: Order Number: Results Legend 22263935 22263953 22263959 Lab Sample No(s) X Test No Determination Possible Customer WS07 SA01 WS02 WS07 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ËS ËS ES1 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate 0.20-0.20-0.80-PR - Process Water 0.45 - 0.70 SA - Saline Water Depth (m) - 0.40 TE - Trade Effluent - 0.30 1.00 TS - Treated Sewage US - Untreated Sewage 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 1kg TUB with Handle (ALE260) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S GRO by GC-FID (W) All NDPs: 0 Tests: 2 Χ X Hexavalent Chromium (s) All NDPs: 0 Tests: 4 X Х Х Х Mercury Dissolved All NDPs: 0 Tests: 2 Х Х Metals in solid samples by OES All NDPs: 0 Tests: 4 Х Х Х Х Nitrite by Kone (w) All NDPs: 0 Tests: 2 Χ Х PAH by GCMS All NDPs: 0 Tests: 4 Х Х Х Х PAH in waters by GC-MS (diss.filt) All NDPs: 0 Tests: 2 Χ рΗ All NDPs: 0 Tests: 4 X X X X pH Value of Filtered Water All NDPs: 0 Tests: 2 X X Phenols by HPLC (S) All NDPs: 0 Tests: 4 X X X Х Phenols by HPLC (W) All NDPs: 0 Tests: 2 Х Х All Sample description NDPs: 0 Tests: 4 Х Х Х Х Total Organic Carbon All NDPs: 0 Tests: 4 Χ X X Χ TPH CWG Filtered (W) All NDPs: 0 Tests: 2 Χ X TPH CWG GC (S) All NDPs: 0 Tests: 4 Χ X X X

Validated

CERTIFICATE OF ANALYSIS

(ALS)	

SDG: A110489-6-1 200606-40 Client Reference: Report Number: 556884 Trinity Fields C20/344 Superseded Report: 556881 Location: Order Number: Results Legend 22263935 22263953 22263959 Lab Sample No(s) X Test No Determination Possible Customer SA01 WS07 WS07 WS02 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ES1 ES1 ES1 ES2 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.20 - 0.40 0.80 - 1.00 0.20 - 0.30 0.45 - 0.70 SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) RE - Recreational Water 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S S VOC MS (S) All NDPs: 0 Tests: 4 Χ X Х Х

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

Sample Descriptions

Grain Sizes

very fine <	0.063mm	fine	0.063mm - 0.1mm	medium	0.1mm	- 2mm	coarse	2	mm - 10m	ım	very coars	e >1	l0n
Lab Sample No(s)	Custon	ner Sample Ref.	Depth (m)	Co	lour	Descript	ion	Inclusio	ons	Inclus	sions 2		
22263935		SA01	0.20 - 0.30	Dark	Brown	Sand		Stones	3	Vege	etation		
22263942		WS02	0.45 - 0.70	Dark	Brown	Sand		Stones	5	Vege	etation		
22263953		WS07	0.20 - 0.40	Dark	Brown	Sand		Stones	3	Vege	etation		
22263959		WS07	0.80 - 1.00	Dark	Brown	Sandy Lo	am	Stones	3	Vege	etation		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG:

200606-40 Trinity Fields A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881 Client Reference: Location: Order Number:

Books Louis							
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.	C	ustomer Sample Ref.	SA01	WS02	WS07	WS07	
diss.filt Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * Subcontracted - refer to subcontractor report	for	Depth (m) Sample Type	0.20 - 0.30 Soil/Solid (S)	0.45 - 0.70 Soil/Solid (S)	0.20 - 0.40 Soil/Solid (S)	0.80 - 1.00 Soil/Solid (S)	
accreditation status. ** % recovery of the surrogate standard to check		Date Sampled Sample Time	02/06/2020	05/06/2020	05/06/2020	05/06/2020	
efficiency of the method. The results of individ compounds within samples aren't corrected for	dual	Date Received SDG Ref	06/06/2020 200606-40	06/06/2020 200606-40	06/06/2020 200606-40	06/06/2020 200606-40	
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	22263935	22263942	22263953	22263959	
1-3+§@ Sample deviation (see appendix)	100///	AGS Reference	ES1	ES1	ES1	ES2	
Component Total Aliphatics & Aromatics >C5-C44	<10 mg/kg	Method SUB	22	111	31	<10	
Moisture Content Ratio (% of as received sample)	%	PM024	4.9	7	7.1	14	
Ali >C12-C16*	<1 mg/kg	SUB	<1	1	<1	<1	
Ali >C16-C21*	<1 mg/kg	SUB	<1	3	<1	<1	
Ali >C21-C35*	<1 mg/kg	SUB	9	21	11	<1	
Aro >EC12-EC16*	<1 mg/kg	SUB	<1	3	<1	<1	
Aro >EC16-EC21*	<1 mg/kg	SUB	<1	9	<1	<1	
Aro >EC21-EC35*	<1 mg/kg	SUB	9	54	11	<1	
Ali >C35-C44*	<1 mg/kg	SUB	1	8	2	<1	
Aro >EC35-EC44*	<1 mg/kg	SUB	3	12	3	<1	
Total Aliphatics >C12-C44*	<4 mg/kg	SUB	10	33	15	<4	
Total Aromatics > EC12-EC44*	<4	SUB		78	16		
	<4 mg/kg	SUB	12			<4	
	0 0						
Phenol	<0.01 mg/kg	TM062 (S)	<0.01 M	<0.01 M	0.0108 M	<0.01 M	
Fraction Organic Carbon (FOC)	<0.002	TM132	0.0196 #	0.0217 #	0.0209 #	0.00683 #	
pH	1 pH Units	TM133	7.39 M	8.25 M	7.4 M	7.79 M	
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6	<0.6	
Cyanide, Easily liberatable (low level)	<0.5 mg/kg	TM153	<0.5	<0.5	<0.5	<0.5	
Chromium, Trivalent	<0.9 mg/kg	TM181	4.07	12.3	7.06	3.49	
Arsenic	<0.6 mg/kg	TM181	13 M	14.8 M	17.7 M	7.22 M	
Beryllium	<0.01 mg/kg	TM181	0.727 M	0.627 M	0.451 M	0.269 M	
Cadmium	<0.02 mg/kg	TM181	0.251 M	0.588 M	0.326 M	0.113 M	
Chromium	<0.9 mg/kg	TM181	4.07 M	12.3 M	7.06 M	3.49 M	
Copper	<1.4 mg/kg	TM181	15.8 M	22.4 M	17.1 M	5.39 M	
Lead	<0.7 mg/kg	TM181	35.2 M	47.5 M	34.3 M	13.1 M	
Mercury	<0.14 mg/kg	TM181	<0.14 M	<0.14 M	<0.14 M	<0.14 M	
Nickel	<0.2 mg/kg	TM181	25 M	17.9 M	15.4 M	7.08 M	
Selenium	<1 mg/kg	TM181	<1 #	<1 #	<1 #	<1 #	
Vanadium	<0.2 mg/kg	TM181	16.2	21.4 #	20.4	17.4	
Zinc	<1.9 mg/kg	TM181	75.6 M	141 M	68.6 M	32.5 M	
Boron, water soluble	<1 mg/kg	TM222	<1 M	<1 M	<1 M	<1 M	
Water Soluble Sulphate as SO4 2:1 Extract	<0.004 g/l	TM243	0.0102 M	0.0225 M	0.0104 M	0.0114 M	
Z. i Extraot			IVI	IVI	IVI	IVI	

200606-40 Trinity Fields A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881 SDG: Client Reference: Location: Order Number:

GRO by GC-FID (S) Results Legend								
# ISO17025 accredited.	C	Customer Sample Ref.	SA01	WS02	WS07	WS07		
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.20 - 0.30	0.45 - 0.70	0.20 - 0.40	0.80 - 1.00		
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	for	Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)		
accreditation status. ** % recovery of the surrogate standard to check	k the	Date Sampled Sample Time	02/06/2020	05/06/2020	05/06/2020	05/06/2020		
efficiency of the method. The results of individ compounds within samples aren't corrected for		Date Received SDG Ref	06/06/2020 200606-40	06/06/2020 200606-40	06/06/2020 200606-40	06/06/2020 200606-40		
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	22263935	22263942	22263953	22263959		
1-3+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	ES1	ES1	ES1	ES2		
GRO Surrogate % recovery**	%	TM089	88.2	96.2	88	105		
Aliphatics >C5-C6	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aliphatics >C6-C8	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aliphatics >C8-C10	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aliphatics >C10-C12	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aromatics >EC5-EC7	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aromatics >EC7-EC8	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aromatics >EC8-EC10	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Aromatics >EC10-EC12	<0.01 mg/kg	TM089	<0.01	<0.01	<0.01	<0.01		
Total Aliphatics >C5-C10	<0.05 mg/kg	TM089	<0.05	<0.05	<0.05	<0.05		
Total Aromatics >EC5-EC10	<0.05 mg/kg		<0.05	<0.05	<0.05	<0.05		
GRO >C5-C10	<0.02 mg/kg	TM089	<0.02	<0.02	<0.02	<0.02		
				<u> </u>		<u> </u>	<u> </u>	<u> </u>

ALS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

PAH by GCMS							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	SA01	WS02	WS07	WS07	
M mCERTS accredited. aq Aqueous / settled sample.		Donath (m)					
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.20 - 0.30 Soil/Solid (S)	0.45 - 0.70 Soil/Solid (S)	0.20 - 0.40 Soil/Solid (S)	0.80 - 1.00 Soil/Solid (S)	
 Subcontracted - refer to subcontractor report f accreditation status. 		Date Sampled	02/06/2020	05/06/2020	05/06/2020	05/06/2020	
** % recovery of the surrogate standard to check efficiency of the method. The results of individ	lual	Sample Time Date Received	06/06/2020	06/06/2020	06/06/2020	06/06/2020	
compounds within samples aren't corrected fo recovery	r the	SDG Ref	200606-40 22263935	200606-40 22263942	200606-40 22263953	200606-40 22263959	
(F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	ES1	ES1	ES1	ES2	
Component	LOD/Units						
Naphthalene-d8 % recovery**	%	TM218	90.1	89.1	90.6	93.5	
Acenaphthene-d10 % recovery**	%	TM218	94.9	94.4	96.3	95.7	
Phenanthrene-d10 % recovery**	%	TM218	95.4	95.7	92.6	92	
Chrysene-d12 % recovery**	%	TM218	92.2	94.7	89.2	90.1	
Perylene-d12 % recovery**	%	TM218	90.4	92.2	86.1	87	
Naphthalene	<0.009 mg/kg	TM218	<0.009 M	0.0222 M	<0.045 M	<0.009 M	
Acenaphthylene	<0.012 mg/kg	TM218	<0.012 M	0.0771 M	<0.06 M	<0.012 M	
Acenaphthene	<0.008 mg/kg	TM218	<0.008 M	0.517 M	<0.04 M	<0.008 M	
Fluorene	<0.01 mg/kg	g TM218	<0.01	0.436	<0.05	<0.01	
Phenanthrene	<0.015 mg/kg	TM218	0.0318 M	3.83	<0.075	<0.015 M	
Anthracene	<0.016 mg/kg	TM218	<0.016	0.844	<0.08 M	<0.016 M	
Fluoranthene	<0.017 mg/kg	TM218	0.0709 M	6.6 M	0.125 M	<0.017 M	
Pyrene	<0.015 mg/kg	TM218	0.0546 M	4.49 M	0.108 M	<0.015 M	
Benz(a)anthracene	<0.014 mg/kg	TM218	0.0488 M	4.16 M	0.0888 M	<0.014 M	
Chrysene	<0.01 mg/kg	g TM218	0.0741 M	3.89 M	0.142 M	<0.01 M	
Benzo(b)fluoranthene	<0.015 mg/kg	TM218	0.118 M		0.235 M	<0.015 M	
Benzo(k)fluoranthene	<0.014 mg/kg	TM218	0.0313 M		<0.07	<0.014 M	
Benzo(a)pyrene	<0.015 mg/kg	TM218	0.049 M		0.102 M	<0.015 M	
Indeno(1,2,3-cd)pyrene	<0.018 mg/kg	TM218	0.0444 M		<0.09 M	<0.018	
Dibenzo(a,h)anthracene	<0.023 mg/kg	TM218	<0.023		<0.115 M	<0.023	
Benzo(g,h,i)perylene	<0.024 mg/kg	TM218	0.0372 M		<0.12	<0.024 M	
PAH, Total Detected USEPA 16	<0.118 mg/kg	TM218	0.561	39.3	0.801	<0.118	

200606-40 Trinity Fields A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881 SDG: Client Reference: Location: Order Number:

VOC MS (S)							
Results Legend # ISO17025 accredited.	C	Customer Sample Ref.	SA01	WS02	WS07	WS07	
M mCERTS accredited. aq Aqueous / settled sample.		_					
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.20 - 0.30 Soil/Solid (S)	0.45 - 0.70 Soil/Solid (S)	0.20 - 0.40 Soil/Solid (S)	0.80 - 1.00 Soil/Solid (S)	
* Subcontracted - refer to subcontractor report accreditation status.	for	Date Sampled	02/06/2020	05/06/2020	05/06/2020	05/06/2020	
** % recovery of the surrogate standard to check efficiency of the method. The results of individ	the	Sample Time					
compounds within samples aren't corrected for	or the	Date Received SDG Ref	06/06/2020 200606-40	06/06/2020 200606-40	06/06/2020 200606-40	06/06/2020 200606-40	
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	22263935	22263942	22263953	22263959	
1-3+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	ES1	ES1	ES1	ES2	
Dibromofluoromethane**	%	TM116	104	110	105	108	
Toluene-d8**	%	TM116	92.2	98.8	88.9	96.3	
4-Bromofluorobenzene**	%	TM116	71.7	89.9	70	84.4	
Methyl Tertiary Butyl Ether	<0.01 mg/kg	TM116	<0.01	<0.2	<0.01	<0.01	
Benzene	<0.009	TM116	<0.009	<0.18	<0.009	<0.009	
Toluene	mg/kg <0.007	TM116	<0.007	<0.14	<0.007	<0.007	
Ethylbenzene	mg/kg <0.004	TM116	<0.004	<0.08	<0.004	<0.004	
p/m-Xylene	mg/kg <0.01 mg/kg	TM116	<0.01	<0.2	<0.01	<0.01	
o-Xylene	<0.01 mg/kg	TM116	# <0.01	*	# <0.01	# <0.01	
7	3 3		М	М	М	М	

Validated

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

Asbestos Identification - Solid Samples

Resul	ts	Legend
-------	----	--------

M mCERTS ac	credited.										
* Subcontrac (F) Trigger brea 1-5&+§@ Sample dev	ach confirmed	Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SA01ES1 0.20 - 0.30 SOLID 02/06/2020 00:00:00 06/06/2020 11:52:00 200606-40 22263935 TM048	10/06/20203	Paul Poynton	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS02ES1 0.45 - 0.70 SOLID 05/06/2020 00:00:00 06/06/2020 11:52:00 200606-40 22263942 TM048	10/06/2020	Christian Hallam	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS07ES1 0.20 - 0.40 SOLID 05/06/2020 00:00:00 06/06/2020 11:52:00 200606-40 22263953 TM048	10/06/2020	Paul Poynton	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS07ES2 0.80 - 1.00 SOLID 05/06/2020 00:00:00 06/06/2020 11:52:00 200606-40 22263959 TM048	10/06/2020	Christian Hallam	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

Particle Size <4mm

CERTIFICATE OF ANALYSIS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.095 Mass of dry sample (kg) 0.090 Site Location Natural Moisture Content (%) 5.86 Dry Matter Content (%) 94.5

 Case

 SDG
 200606-40

 Lab Sample Number(s)
 22263935

 Sampled Date
 02-Jun-2020

 Customer Sample Ref.
 SA01 ES1

 Depth (m)
 0.20 - 0.30

>95%

Eluate Analysis	C ₂ Conc ⁿ in 10:1	eluate (mg/l)	A2 10:1 conc ⁿ le	eached (mg/kg)			
	Result	Limit of Detection	Result	Limit of Detection			
Aliphatics >C12-C16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Nitrite as NO2	<0.05	<0.05	<0.5	<0.5	-	-	-
Sulphate (soluble)	<2	<2	<20	<20	-	-	-
Chloride	<2	<2	<20	<20	-	-	-
Dissolved Organic Carbon	5.11	<3	51.1	<30	-	_	_
Mercury Dissolved (CVAF)	0.0000241	<0.00001	0.000241	<0.0001	-	-	-
Antimony	<0.001	<0.001	<0.01	<0.01	-	-	-
Naphthalene (diss.filt)	<0.00001	<0.00001	<0.0001	<0.0001	-	-	-
Total Ammonia as NH3	<0.2	<0.2	<2	<2	-	-	-
Total Cyanide (W)	<0.05	< 0.05	<0.5	<0.5	-	-	-
Acenaphthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Arsenic	0.000914	< 0.0005	0.00914	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<3	<3	-	-	-
Acenaphthylene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Barium	0.225	<0.0002	2.25	<0.002	-	-	-
Nitrate as NO3	1.1	<0.3	11	<3	-	-	-
Phenol by HPLC (W)	<0.002	<0.002	<0.02	<0.02	-	-	-
Beryllium	<0.0001	<0.0001	<0.001	<0.001	-	-	-
Fluoranthene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Anthracene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Boron	0.0407	<0.01	0.407	<0.1	-	-	-
Phenanthrene (diss.filt)	0.00000554	<0.00005	0.0000554	<0.00005	-	-	-
Total Alkalinity Filtered as CaCO3	6.5	<2	65	<20	-	-	-
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	-	-	-
Fluorene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Chrysene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-

Leach Test Information

Date Prepared	08-Jun-2020
pH (pH Units)	7.45
Conductivity (µS/cm)	15.70
Temperature (°C)	15.50
Volume Leachant (Litres)	0.895

Mcerts Certification does not apply to leachates 28/06/2020 12:37:06

ALS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS

Client Reference

Site Location

Trinity Fields

Mass Sample taken (kg)

0.095

Natural Moisture Content (%)

5.86

Mass of dry sample (kg)

0.090

Dry Matter Content (%)

94.5

Particle Size <4mm

>95%

 Case

 SDG
 200606-40

 Lab Sample Number(s)
 22263935

 Sampled Date
 02-Jun-2020

 Customer Sample Ref.
 SA01 ES1

 Depth (m)
 0.20 - 0.30

Eluate Analysis	C ₂ Conc ⁿ in 10:1	eluate (mg/l)	A ₂ 10:1 conc ⁿ lea	ached (mg/kg)			
	Result	Limit of Detection	Result	Limit of Detection			
Pyrene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Benzo(a)anthracene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Chromium	0.00109	<0.001	0.0109	<0.01		-	-
Benzo(b)fluoranthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Benzo(k)fluoranthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Benzo(a)pyrene (diss.filt)	<0.000002	<0.000002	<0.00002	<0.00002		-	-
Copper	0.00273	<0.0003	0.0273	< 0.003	-	-	-
Dibenzo(a,h)anthracene (diss.filt)	<0.00005	<0.000005	<0.00005	<0.00005	-	-	-
Lead	0.00314	<0.0002	0.0314	<0.002		-	-
Benzo(g,h,i)perylene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Indeno(1,2,3-cd)pyrene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Molybdenum	< 0.003	< 0.003	<0.03	< 0.03		-	-
PAH 16 EPA Total by GCMS (diss.filt)	<0.000082	<0.000082	<0.00082	<0.00082	-	-	-
Nickel	0.00125	<0.0004	0.0125	<0.004	-	-	-
Selenium	<0.001	<0.001	<0.01	<0.01		-	-
Zinc	0.0344	<0.001	0.344	<0.01	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	<0	-	<0	-	-	-
GRO TOT (C5-C12)	<0.05	<0.05	<0.5	<0.5	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.1	<0.1	-	-	-
MTBE GC-FID	< 0.003	<0.003	<0.03	< 0.03	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.1	<0.1	-	-	-
Benzene by GC	<0.007	<0.007	<0.07	<0.07		-	-
Toluene by GC	<0.004	<0.004	<0.04	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.05	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.08	<0.08	-	-	_
o Xylene by GC	< 0.003	< 0.003	<0.03	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.11	<0.11	-	-	
Sum of BTEX by GC	<0.028	<0.028	<0.28	<0.28	-	-	-

Leach Test Information

Date Prepared	08-Jun-2020
pH (pH Units)	7.45
Conductivity (µS/cm)	15.70
Temperature (°C)	15.50
Volume Leachant (Litres)	0.895

Mcerts Certification does not apply to leachates 28/06/2020 12:37:06

>95%

Particle Size <4mm

200606-40 SDG: Client Reference: A110489-6-1 Report Number: 556884 Location: Trinity Fields C20/344 Superseded Report: 556881 Order Number:

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS REF: BS EN 12457/2 Trinity Fields **Client Reference Site Location** 10.2 Mass Sample taken (kg) 0.099 **Natural Moisture Content (%)** 90.8 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)**

Case SDG 200606-40 Lab Sample Number(s) 22263942 **Sampled Date** 05-Jun-2020 WS02 ES1 **Customer Sample Ref.** Depth (m) 0.45 - 0.70

Eluate Analysis	C ₂ Conc ⁿ in 10:1	eluate (mg/l)	A ₂ 10:1 conc ⁿ leached (mg/kg)				
	Result	Limit of Detection	Result	Limit of Detection			
Aliphatics >C12-C16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Nitrite as NO2	0.323	<0.05	3.23	<0.5	-	_	_
Sulphate (soluble)	<2	<2	<20	<20	-	-	-
Chloride	<2	<2	<20	<20	-	-	_
Dissolved Organic Carbon	5.11	<3	51.1	<30	-	_	_
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	-	-	_
Antimony	<0.001	<0.001	<0.01	<0.01	-	-	_
Naphthalene (diss.filt)	<0.00001	<0.00001	<0.0001	<0.0001	-	_	_
Total Ammonia as NH3	<0.2	<0.2	<2	<2	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.5	<0.5	-	-	-
Acenaphthene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Arsenic	0.000648	<0.0005	0.00648	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<3	<3	-	-	-
Acenaphthylene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Barium	0.357	<0.0002	3.57	<0.002	-	-	-
Nitrate as NO3	2.22	<0.3	22.2	<3	-	-	-
Phenol by HPLC (W)	<0.002	<0.002	<0.02	<0.02	-	-	-
Beryllium	<0.0001	<0.0001	<0.001	<0.001	-	-	-
Fluoranthene (diss.filt)	0.0000277	<0.000005	0.000277	<0.00005	-	-	-
Anthracene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Boron	0.0411	<0.01	0.411	<0.1	-	-	-
Phenanthrene (diss.filt)	0.000014	<0.000005	0.00014	<0.00005	-	-	-
Total Alkalinity Filtered as CaCO3	70	<2	700	<20	-	-	-
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	-	-	-
Fluorene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Chrysene (diss.filt)	0.0000105	<0.00005	0.000105	<0.00005	-	-	-

Leach Test Information

Date Prepared	08-Jun-2020
pH (pH Units)	6.75
Conductivity (µS/cm)	109.00
Temperature (°C)	10.70
Volume Leachant (Litres)	0.891

Mcerts Certification does not apply to leachates 28/06/2020 12:37:06

ALS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS

Client Reference

Site Location

Trinity Fields

Mass Sample taken (kg)

0.099

Natural Moisture Content (%)

Dry Matter Content (%)

90.8

Particle Size <4mm

>95%

 Case

 SDG
 200606-40

 Lab Sample Number(s)
 22263942

 Sampled Date
 05-Jun-2020

 Customer Sample Ref.
 WS02 ES1

 Depth (m)
 0.45 - 0.70

Eluate Analysis	e Analysis C ₂ Conc ⁿ in 10:1 eluate (mg/l) A ₂ 10:1 conc ⁿ leached (m			A ₂ 10:1 conc ⁿ leached (mg/kg)			
	Result	Limit of Detection	Result	Limit of Detection	•		
Pyrene (diss.filt)	0.0000228	<0.000005	0.000228	<0.00005	-	-	-
Benzo(a)anthracene (diss.filt)	0.000056	<0.00005	0.000056	<0.00005	-	-	-
Chromium	0.00104	<0.001	0.0104	<0.01	-	-	-
Benzo(b)fluoranthene (diss.filt)	0.0000187	<0.00005	0.000187	<0.00005	-	-	-
Benzo(k)fluoranthene (diss.filt)	0.00000616	<0.00005	0.0000616	<0.00005	-	-	-
Benzo(a)pyrene (diss.filt)	0.00000939	<0.000002	0.0000939	<0.00002	-	-	_
Copper	0.00353	< 0.0003	0.0353	<0.003	-	-	-
Dibenzo(a,h)anthracene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Lead	0.000308	<0.0002	0.00308	<0.002	-	-	_
Benzo(g,h,i)perylene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Indeno(1,2,3-cd)pyrene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Molybdenum	< 0.003	< 0.003	< 0.03	< 0.03	-	-	-
PAH 16 EPA Total by GCMS (diss.filt)	0.000115	<0.000082	0.00115	<0.00082	-	-	_
Nickel	0.000409	<0.0004	0.00409	<0.004	-	-	-
Selenium	<0.001	<0.001	<0.01	<0.01	-	-	-
Zinc	0.0083	<0.001	0.083	<0.01	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	<0	-	<0	_	-	-
GRO TOT (C5-C12)	< 0.05	<0.05	<0.5	<0.5	_	_	_
Aliphatics C5-C6	<0.01	<0.01	<0.1	<0.1	_	_	_
Aliphatics >C6-C8	<0.01	<0.01	<0.1	<0.1	_	-	_
Aliphatics >C8-C10	<0.01	<0.01	<0.1	<0.1	_	-	_
Aliphatics >C10-C12	<0.01	<0.01	<0.1	<0.1	_	_	_
Aromatics C6-C7	<0.01	<0.01	<0.1	<0.1	_	-	_
Aromatics >C7-C8	<0.01	<0.01	<0.1	<0.1	_	-	_
MTBE GC-FID	< 0.003	<0.003	<0.03	<0.03	_	_	_
Aromatics >EC8 -EC10	<0.01	<0.01	<0.1	<0.1	_	-	_
Aromatics >EC10-EC12	<0.01	<0.01	<0.1	<0.1	_	-	_
Benzene by GC	<0.007	<0.007	<0.07	<0.07	_	_	_
Toluene by GC	<0.004	<0.004	<0.04	<0.04	_	-	_
Ethylbenzene by GC	<0.005	<0.005	<0.05	<0.05	_	_	_
m & p Xylene by GC	<0.008	<0.008	<0.08	<0.08	_	-	-
o Xylene by GC	<0.003	<0.003	<0.03	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.11	<0.11	_	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.28	<0.28	-	-	-

Leach Test Information

Date Prepared	08-Jun-2020
pH (pH Units)	6.75
Conductivity (µS/cm)	109.00
Temperature (°C)	10.70
Volume Leachant (Litres)	0.891

Mcerts Certification does not apply to leachates 28/06/2020 12:37:06

SDG: 200606-40 Client Reference: Location: Trinity Fields Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

Table of Results - Appendix

		Nesults - Appelluix
Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM243		Mixed Anions In Soils By Kone
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated

CERTIFICATE OF ANALYSIS

ALS

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

Test Completion Dates

lest comple				hierioi
Lab Sample No(s)	22263935	22263942	22263953	22263959
Customer Sample Ref.	SA01	WS02	WS07	WS07
oustomer oumple Rei.				
AGS Ref.	ES1	ES1	ES1	ES2
Depth	0.20 - 0.30	0.45 - 0.70	0.20 - 0.40	0.80 - 1.00
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Alkalinity Filtered as CaCO3	11-Jun-2020	11-Jun-2020		
Ammoniacal Nitrogen	11-Jun-2020	11-Jun-2020		
Anions by Kone (soil)	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020
Anions by Kone (w)	11-Jun-2020	11-Jun-2020		
Asbestos ID in Solid Samples	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020
Boron Water Soluble	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020
CEN 10:1 Leachate (1 Stage)	09-Jun-2020	09-Jun-2020		
CEN Readings	10-Jun-2020	10-Jun-2020		
Chromium III	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020
Cyanide Comp/Free/Total/Thiocyanate	12-Jun-2020	12-Jun-2020	10-Jun-2020	10-Jun-2020
Dissolved Metals by ICP-MS	11-Jun-2020	11-Jun-2020		
Dissolved Organic/Inorganic Carbon	12-Jun-2020	12-Jun-2020		
EPH CWG (Aliphatic) Filtered GC (W)	13-Jun-2020	13-Jun-2020		
EPH CWG (Aromatic) Filtered GC (W)	13-Jun-2020	13-Jun-2020		
EPH CWG*	28-Jun-2020	24-Jun-2020	24-Jun-2020	28-Jun-2020
GRO by GC-FID (S)	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020
GRO by GC-FID (W)	12-Jun-2020	12-Jun-2020		
Hexavalent Chromium (s)	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020
Mercury Dissolved	11-Jun-2020	11-Jun-2020		
Metals in solid samples by OES	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020
Moisture at 105C	08-Jun-2020	08-Jun-2020		
Nitrite by Kone (w)	11-Jun-2020	11-Jun-2020		
PAH by GCMS	09-Jun-2020	09-Jun-2020	09-Jun-2020	10-Jun-2020
PAH in waters by GC-MS (diss.filt)	12-Jun-2020	12-Jun-2020		
рН	08-Jun-2020	08-Jun-2020	08-Jun-2020	10-Jun-2020
pH Value of Filtered Water	11-Jun-2020	11-Jun-2020		
Phenols by HPLC (S)	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020
Phenols by HPLC (W)	12-Jun-2020	12-Jun-2020		
Sample description	08-Jun-2020	08-Jun-2020	08-Jun-2020	08-Jun-2020
Total Organic Carbon	12-Jun-2020	10-Jun-2020	12-Jun-2020	12-Jun-2020
TPH CWG Filtered (W)	13-Jun-2020	13-Jun-2020		
TPH CWG GC (S)	28-Jun-2020	28-Jun-2020	28-Jun-2020	28-Jun-2020
VOC MS (S)	10-Jun-2020	11-Jun-2020	10-Jun-2020	10-Jun-2020

ALS

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881 Validated

ASSOCIATED AQC DATA

Alkalinity Filtered as CaCO3

Component	Method Code	QC 2229	QC 2286
Total Alkalinity Filtered as	TM043	101.01	105.0
CaCO3		95.62 : 106.88	100.35 : 114.15

Ammoniacal Nitrogen

Component	Method Code	QC 2210
Ammoniacal Nitrogen as N	TM099	101.2 93.14 : 108.60

Anions by Kone (soil)

_	Component	Method Code	QC 2243
	Water Soluble Sulphate as SO4 2:1 Extract	TM243	93.93 75.60 : 131.10

Anions by Kone (w)

Component	Method Code	QC 2250
Chloride	TM184	108.0 92.93 : 115.43
Sulphate (soluble)	TM184	104.8 90.53 : 113.03
TON as NO3	TM184	104.0 94.00 : 111.10

Boron Water Soluble

Component	Method Code	QC 2285
Water Soluble Boron	TM222	100.5 85.80 : 112.50

Cyanide Comp/Free/Total/Thiocyanate

Component	Method Code	QC 2285	QC 2292	QC 2238
Free Cyanide	TM153	89.01 82.09 : 117.91	88.32 82.09 : 117.91	
Free Cyanide (W)	TM227			98.5 90.50 : 114.50
Thiocyanate	TM153	97.44 90.48 : 109.52	98.72 90.48 : 109.52	

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

Cyanide Comp/Free/Total/Thiocyanate

		QC 2285	QC 2292	QC 2238
Thiocyanate (W)	TM227			95.75 90.50 : 113.00
Total Cyanide	TM153	92.31 86.12 : 113.88	91.61 86.12 : 113.88	
Total Cyanide (W)	TM227			103.75 91.75 : 112.75

Dissolved Metals by ICP-MS

Dissolved Metals by It	31 WO	
Component	Method Code	QC 2252
Aluminium	TM152	105.0
		91.36 : 108.58
Antimony	TM152	104.67
		88.37 : 130.57
Arsenic	TM152	105.17
		92.62 : 113.52
Barium	TM152	104.67
		88.14 : 108.73
Beryllium	TM152	105.5
		89.98 : 116.88
Bismuth	TM152	105.33
	T14450	92.62 : 115.02
Boron	TM152	107.67
Cadmium	TM152	86.31 : 120.88
Cadmium	1101152	107.0
Calcium	TM152	93.85 : 111.65
Calcium	TIVITOL	96.67 89.20 : 126.91
Chromium	TM152	
		105.0 92.22 : 109.85
Cobalt	TM152	104.33
		85.01 : 114.87
Copper	TM152	104.17
		89.87 : 119.73
Iron	TM152	106.67
		93.02 : 113.86
Lead	TM152	106.0
		91.11 : 116.98
Lithium	TM152	104.33
		91.30 : 123.00
Magnesium	TM152	96.67
		89.60 : 116.61
Manganese	TM152	109.33
Malada da assessa	TM450	93.97 : 112.46
Molybdenum	TM152	102.0
Niekol	TM152	89.07 : 110.96
Nickel	TM152	106.0 93.70 : 112.15
Phosphorus	TM152	
	102	99.33 89.24 : 114.18
Potassium	TM152	98.67
		93.20 : 115.55
Selenium	TM152	104.17
		91.69 : 117.12

Validated

CERTIFICATE OF ANALYSIS

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

Dissolved Metals by ICP-MS

		QC 2252
Silver	TM152	113.0 90.93 : 121.73
Sodium	TM152	96.0 92.42 : 113.24
Strontium	TM152	105.0 92.14 : 116.24
Tellurium	TM152	101.83 89.88 : 111.78
Thallium	TM152	102.0 82.43 : 113.83
Tin	TM152	104.0 94.62 : 107.79
Titanium	TM152	108.67 90.29 : 115.23
Tungsten	TM152	106.33 77.61 : 132.31
Uranium	TM152	105.33 86.97 : 115.76
Vanadium	TM152	105.17 89.61 : 115.48
Zinc	TM152	107.0 87.51 : 116.26

Dissolved Organic/Inorganic Carbon

Component	Method Code	QC 2269
Dissolved Inorganic Carbon	TM090	101.83 93.58 : 112.28
Dissolved Organic Carbon	TM090	103.0 96.28 : 110.58

EPH CWG (Aromatic) Filtered GC (W)

Component	Method Code	QC 2235
Total Aromatics >EC10-E	C40 TM174	99.02 73.75 : 120.32

GRO by GC-FID (S)

Component	Method Code	QC 2236	QC 2291
QC	TM089	80.78 70.75 : 114.19	81.79 70.34 : 111.95

GRO by GC-FID (W)

Validated

CERTIFICATE OF ANALYSIS

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

GRO by GC-FID (W)

Component	Method Code	QC 2250
Benzene by GC	TM245	87.0 79.13 : 118.84
Ethylbenzene by GC	TM245	85.0 79.54 : 115.99
m & p Xylene by GC	TM245	84.75 78.44 : 116.32
MTBE GC-FID	TM245	98.5 81.43 : 120.09
o Xylene by GC	TM245	87.5 76.85 : 120.29
QC	TM245	124.98 71.58 : 131.01
Toluene by GC	TM245	86.0 79.00 : 121.96

Hexavalent Chromium (s)

Component	Method Code	QC 2258	QC 2292
Hexavalent Chromium	TM151	102.0 95.60 : 107.60	102.0 95.60 : 107.60

Mercury Dissolved

Component	Method Code	QC 2297
Mercury Dissolved (CVAF)	TM183	96.9
		75.00 : 111.00

Metals in solid samples by OES

Component	Method Code	QC 2208
Aluminium	TM181	101.77 73.56 : 108.85
Antimony	TM181	106.1 76.89 : 111.24
Arsenic	TM181	102.03 88.53 : 111.01
Barium	TM181	99.08 77.67 : 105.35
Beryllium	TM181	101.12 85.44 : 109.61
Boron	TM181	94.27 73.51 : 104.66
Cadmium	TM181	92.18 77.67 : 104.12
Chromium	TM181	99.39 82.26 : 104.55
Cobalt	TM181	92.45 82.27 : 101.60

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

Metals in solid samples by OES

		QC 2208
Copper	TM181	95.42
		82.40 : 105.45
Iron	TM181	97.62
		82.95 : 110.58
Lead	TM181	92.57
		78.24 : 104.05
Manganese	TM181	111.11
		94.29 : 119.51
Mercury	TM181	93.0
		83.16 : 107.81
Molybdenum	TM181	100.82
		87.11 : 106.87
Nickel	TM181	94.87
		80.26 : 102.28
Phosphorus	TM181	112.53
		94.56 : 124.28
Selenium	TM181	100.78
		82.28 : 110.48
Strontium	TM181	94.88
		79.13 : 102.79
Thallium	TM181	96.02
		82.94 : 111.86
Tin	TM181	101.14
		86.72 : 110.03
Titanium	TM181	90.08
		66.23 : 102.06
Vanadium	TM181	102.56
		86.19 : 109.45
Zinc	TM181	99.38
		84.68 : 113.99

PAH by GCMS

Component	Method Code	QC 2209	QC 2221
Acenaphthene	TM218	87.5	90.5
		76.79 : 103.90	76.79 : 103.90
Acenaphthylene	TM218		212
Acenaphunylene	1101210	87.5	91.0
		78.40 : 108.66	78.40 : 108.66
Anthracene	TM218	85.0	83.5
		76.15 : 110.07	76.15 : 110.07
Benz(a)anthracene	TM218	89.0	93.0
		73.77 : 119.26	73.77 : 119.26
Benzo(a)pyrene	TM218	86.5	88.5
		73.20 : 114.18	73.20 : 114.18
Benzo(b)fluoranthene	TM218	94.0	89.5
		75.36 : 117.58	75.36 : 117.58
Benzo(ghi)perylene	TM218	73.5	86.5
		70.73 : 116.12	70.73 : 116.12
Benzo(k)fluoranthene	TM218	90.0	90.5
		75.98 : 116.59	75.98 : 116.59
Chrysene	TM218	85.5	90.0
		74.82 : 114.18	74.82 : 114.18
Dibenzo(ah)anthracene	TM218	81.0	85.0
		69.17 : 115.30	69.17 : 115.30

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

PAH by GCMS

	'	QC 2209	QC 2221
Fluoranthene	TM218	86.5 75.88 : 112.84	93.0 75.88 : 112.84
Fluorene	TM218	88.0 78.50 : 114.02	92.5 78.50 : 114.02
Indeno(123cd)pyrene	TM218	85.0 70.26 : 117.95	87.5 70.26 : 117.95
Naphthalene	TM218	81.0 75.24 : 111.26	83.5 75.24 : 111.26
Phenanthrene	TM218	86.5 77.07 : 107.43	88.0 77.07 : 107.43
Pyrene	TM218	84.5 78.74 : 112.56	89.0 78.74 : 112.56

PAH in waters by GC-MS (diss.filt)

Component	Method Code	QC 2280
Acenaphthene (diss.filt)	TM178	101.6
		94.40 : 118.40
Acenaphthylene (diss.filt)	TM178	96.4
		92.00 : 116.00
Anthracene (diss.filt)	TM178	101.2
		88.80 : 115.20
Benzo(a)anthracene (diss.filt)	TM178	101.2
		85.20 : 118.80
Benzo(a)pyrene (diss.filt)	TM178	104.4
		90.40 : 119.20
Benzo(b)fluoranthene (diss.filt)	TM178	102.8
		86.40 : 122.40
Benzo(g,h,i)perylene (diss.filt)	TM178	103.2
		92.00 : 116.00
Benzo(k)fluoranthene (diss.filt)	TM178	100.0
		92.00 : 125.60
Chrysene (diss.filt)	TM178	104.4
		95.20 : 121.60
Dibenzo(a,h)anthracene (diss.filt)	TM178	97.2
(uiss.iiit)		88.80 : 112.80
Fluoranthene (diss.filt)	TM178	103.2
		87.60 : 118.80
Fluorene (diss.filt)	TM178	102.4
		93.60 : 117.60
Indeno(1,2,3-cd)pyrene (diss.filt)	TM178	96.8
. ,		85.60 : 114.40
Naphthalene (diss.filt)	TM178	104.0
		87.20 : 123.20
Phenanthrene (diss.filt)	TM178	103.6
		94.00 : 118.00
Pyrene (diss.filt)	TM178	102.0
		87.20 : 120.80
will.		

рН

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

nН

Component	Method Code	QC 2266	QC 2252
рН	TM133	100.26 98.47 : 102.33	100.53 97.80 : 101.67

pH Value of Filtered Water

Component	Method Code	QC 2261
pH Value of Filtered Water	TM256	101.08 99.73 : 102.16

Phenols by HPLC (S)

Component	Method Code	QC 2236
2.3.5 Trimethyl-Phenol by HPLC (S)	TM062 (S)	96.1 83.23 : 109.71
2-Isopropyl Phenol by HPLC (S)	TM062 (S)	83.63 76.34 : 104.11
Catechol by HPLC (S)	TM062 (S)	91.43 22.43 : 157.02
Cresols by HPLC (S)	TM062 (S)	88.1 90.22 : 116.89
Napthol by HPLC (S)	TM062 (S)	112.86 75.62 : 124.38
Phenol by HPLC (S)	TM062 (S)	95.36 79.53 : 120.47
Resorcinol HPLC (S)	TM062 (S)	88.68 71.43 : 129.59
Xylenols by HPLC (S)	TM062 (S)	92.29 89.90 : 107.23

Phenols by HPLC (W)

Component	Method Code	QC 2259
2.3.5 Trimethyl-Phenol by HPLC (W)	TM259	102.0 91.00 : 109.00
2-Isopropyl Phenol by HPLC (W)	TM259	96.0 90.00 : 114.00
Cresols by HPLC (W)	TM259	103.33 90.02 : 130.15
Napthol by HPLC (W)	TM259	107.0 86.00 : 128.00
Phenol by HPLC (W)	TM259	99.0 85.89 : 109.89
Xylenols by HPLC (W)	TM259	100.17 93.33 : 107.33

Total Organic Carbon

CERTIFICATE OF ANALYSIS

SDG: 200606-40 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/344 Report Number: Superseded Report: 556884 556881

Total Organic Carbon

Component	Method Code	QC 2274	QC 2231
Total Organic Carbon	TM132	94.92	100.78
		84.82 : 117.61	84.82 : 117.61

VOC MS (S)

Component	Method Code	QC 2225	QC 2262	QC 2243
1,1,1,2-tetrachloroethane	TM116	106.2 84.84 : 116.25	102.4 84.84 : 116.25	97.8 79.10 : 119.66
1,1,1-Trichloroethane	TM116	101.0 73.73 : 118.05	98.0 73.73 : 118.05	96.2 87.51 : 115.37
1,1,2-Trichloroethane	TM116	103.6 77.12 : 116.04	103.4 77.12 : 116.04	99.6 75.16 : 112.70
1,1-Dichloroethane	TM116	106.4 74.46 : 129.15	100.8 74.46 : 129.15	100.2 86.77 : 122.11
1,2-Dichloroethane	TM116	117.8 92.38 : 131.65	118.0 92.38 : 131.65	114.0 86.58 : 129.62
1,4-Dichlorobenzene	TM116	103.4 83.64 : 126.18	100.8 83.64 : 126.18	95.4 84.04 : 124.40
2-Chlorotoluene	TM116	95.6 75.26 : 110.11	93.6 75.26 : 110.11	81.8 73.76 : 115.43
4-Chlorotoluene	TM116	92.2 66.90 : 112.46	90.8 66.90 : 112.46	84.4 72.48 : 112.82
Benzene	TM116	103.8 88.60 : 113.80	102.6 88.60 : 113.80	96.8 84.29 : 112.22
Carbon Disulphide	TM116	97.8 74.91 : 122.14	97.2 74.91 : 122.14	98.2 75.11 : 124.81
Carbontetrachloride	TM116	103.8 80.31 : 124.50	101.4 80.31 : 124.50	100.4 82.35 : 126.46
Chlorobenzene	TM116	105.4 83.81 : 114.18	104.0 83.81 : 114.18	93.6 82.88 : 122.42
Chloroform	TM116	110.6 87.40 : 122.49	104.0 87.40 : 122.49	101.6 90.35 : 120.38
Chloromethane	TM116	94.0 65.05 : 142.63	93.6 65.05 : 142.63	106.0 52.88 : 131.36
Cis-1,2-Dichloroethene	TM116	103.6 80.67 : 126.72	100.2 80.67 : 126.72	97.8 78.27 : 128.90
Dibromomethane	TM116	99.4 76.06 : 125.74	101.4 76.06 : 125.74	98.8 76.00 : 120.73
Dichloromethane	TM116	114.0 81.11 : 133.25	110.6 81.11 : 133.25	111.8 89.49 : 128.89
Ethylbenzene	TM116	97.8 75.92 : 110.41	96.6 75.92 : 110.41	83.2 70.95 : 113.07
Hexachlorobutadiene	TM116	86.0 12.82 : 152.73	68.0 12.82 : 152.73	45.6 14.55 : 147.92
Isopropylbenzene	TM116	83.8 54.21 : 117.17	82.0 54.21 : 117.17	61.8 52.00 : 108.19
Naphthalene	TM116	106.6 80.86 : 128.81	115.2 80.86 : 128.81	96.2 80.29 : 135.77
o-Xylene	TM116	90.2 69.99 : 108.74	89.2 69.99 : 108.74	75.6 64.92 : 98.85

556884

556881

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:

VOC MS (S)

	·	QC 2225	QC 2262	QC 2243
p/m-Xylene	TM116	95.7 68.32 : 108.91	93.5 68.32 : 108.91	79.0 72.04 : 104.04
Sec-Butylbenzene	TM116	82.2 44.91 : 118.40	72.6 44.91 : 118.40	51.2 27.03 : 135.73
Tetrachloroethene	TM116	109.2 76.95 : 121.02	107.2 76.95 : 121.02	94.0 81.43 : 126.65
Toluene	TM116	98.8 74.24 : 107.42	97.2 74.24 : 107.42	89.6 82.44 : 103.50
Trichloroethene	TM116	99.8 77.61 : 111.54	100.2 77.61 : 111.54	93.4 79.80 : 112.33
Trichlorofluoromethane	TM116	107.4 84.55 : 133.27	103.2 84.55 : 133.27	107.4 86.68 : 126.82
Vinyl Chloride	TM116	97.8 70.29 : 138.58	98.0 70.29 : 138.58	110.6 69.66 : 136.55

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/04843

Issue Number: s2 Date: 26 June, 2020

Client: ALS Life Sciences Ltd

Units 7&8 Hawarden Business Park

Manor Road Hawarden Flintshire **CH5 3US**

Project Manager: Hawarden Subcontracting

Project Name: Not specified

Project Ref: Various Order No: Advised **Date Samples Received:** 16/06/20 **Date Instructions Received:** 17/06/20 **Date Analysis Completed:** 24/06/20

Prepared by: Approved by:

Sophie France

John Gustafson Client Service Manager **Managing Director**

Envirolab Job Number: 20/04843 Client Project Name: Not specified

Client Project Ref: Various

Lab Sample ID	20/04843/9	20/04843/10	20/04843/11	20/04843/12			-		
Client Sample No	22302810	22302779	22302796	22302654					
Client Sample ID	SA01	WS02	WS07	WS07					
Depth to Top	0.20	0.45	0.20	0.80					
Depth To Bottom	0.30	0.70	0.40	1.00				ion	
Date Sampled	02-Jun-20	05-Jun-20	05-Jun-20	05-Jun-20				Limit of Detection	Method ref
Sample Type	Soil	Soil	Soil	Soil				t of D	
Sample Matrix Code	6A	6AE	6AE	6AE			Units	Meth	
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1			% w/w	0.1	A-T-044
Ali >C12-C16AM#	<1	1	<1	<1			mg/kg	1	A-T-055s
Ali >C16-C21A ^{M#}	<1	3	<1	<1			mg/kg	1	A-T-055s
Ali >C21-C35 _A	9	21	11	<1			mg/kg	1	A-T-055s
Ali >C35-C44 _A	1	8	2	<1			mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1	3	<1	<1			mg/kg	1	A-T-055s
Aro >C16-C21AM#	<1	9	<1	<1			mg/kg	1	A-T-055s
Aro >C21-C35A ^{M#}	9	54	11	<1			mg/kg	1	A-T-055s
Aro >C35-C44 _A	3	12	3	<1			mg/kg	1	A-T-055s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

20/04843

17/06/2020 (am)

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Project No:

Date Received:

Client: ALS Life Sciences Ltd, Units 7&8 Hawarden Business Park, Manor Road,

Hawarden, Flintshire, CH5 3US

Project: Cool Box Temperatures (°C): 9.6

Clients Project No: Various

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

 SDG:
 200606-40
 Client Reference:
 A110489-6-1
 Report Number:
 556884

 Location:
 Trinity Fields
 Order Number:
 C20/344
 Superseded Report:
 556881

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "nixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow nAsbests
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017)

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> Tel: (01244) 528700 Fax: (01244) 528701

CH5 3US

email: haward encustomers ervices@alsglobal.com

Website: www.alsenvironmental.co.uk

WYG Geo-Environment 5th Floor Longcross Court 47 Newport Road Cardiff CF24 0AD

Attention: Sophie Brookes

CERTIFICATE OF ANALYSIS

Date of report Generation: 24 June 2020

Customer: WYG Geo-Environment

Sample Delivery Group (SDG):200610-85Your Reference:A110489-6-1Location:Trinity FieldsReport No:556416

We received 6 samples on Wednesday June 10, 2020 and 4 of these samples were scheduled for analysis which was completed on Wednesday June 24, 2020. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

Version: 2.4 Version Issued: 24/06/2020

Validated

SDG: 200610-85 Location: Trinity Fields

Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
22281405	BH01	ES1	0.20 - 0.80	08/06/2020
22281410	BH01	ES2	0.80 - 1.20	08/06/2020
22281394	WS04	ES1	0.60 - 0.90	08/06/2020
22281416	WS05	ES1	0.30 - 0.50	09/06/2020
22281400	WS06	ES1	1.00 - 1.30	08/06/2020
22281389	WS09	ES1	0.40 - 0.60	08/06/2020

Maximum Sample/Coolbox Temperature (°C):

4.8

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

556416

CERTIFICATE OF ANALYSIS

A110489-6-1

Report Number:

Client Reference:

ALS

SDG:

200610-85

C20/345 Superseded Report: Location: Trinity Fields Order Number: Results Legend 22281394 22281389 22281405 22281410 Lab Sample No(s) X Test No Determination Possible Customer WS04 WS09 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ES1 ES1 ES2 ES1 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate 0.40-0.20 0.80 -PR - Process Water 0.60 - 0.90 SA - Saline Water Depth (m) TE - Trade Effluent - 0.80 - 0.60 1.20 TS - Treated Sewage US - Untreated Sewage 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 1kg TUB with Handle (ALE260) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S Alkalinity Filtered as CaCO3 All NDPs: 0 Tests: 2 Χ Х Ammoniacal Nitrogen All NDPs: 0 Tests: 2 Χ Х Anions by Kone (soil) All NDPs: 0 Tests: 4 X X X Х Anions by Kone (w) All NDPs: 0 Tests: 2 X Х All Asbestos ID in Solid Samples NDPs: 0 Tests: 4 Χ Χ Х Х Boron Water Soluble All NDPs: 0 Tests: 4 X Х Х Х CEN Readings All NDPs: 0 Tests: 2 Х Χ Chromium III All NDPs: 0 Tests: 4 Χ Χ Χ Χ Cyanide Comp/Free/Total/Thiocyanate All NDPs: 0 Tests: 6 X X X Х Χ X Dissolved Metals by ICP-MS All NDPs: 0 Tests: 2 X X Dissolved Organic/Inorganic Carbon All NDPs: 0 Tests: 2 Х Х EPH CWG (Aliphatic) Filtered GC (W) All NDPs: 0 Tests: 2 Х Х EPH CWG (Aromatic) Filtered GC (W) All NDPs: 0 Tests: 2 Х Х EPH CWG GC (S) All NDPs: 0 Tests: 4 Х Х Х Х GRO by GC-FID (S) All NDPs: 0 Tests: 4 Χ X Χ X

556416

CERTIFICATE OF ANALYSIS

A110489-6-1

Report Number:

Client Reference:

AI	5)

SDG:

200610-85

Trinity Fields C20/345 Superseded Report: Location: Order Number: Results Legend 22281405 22281410 22281394 22281389 Lab Sample No(s) X Test No Determination Possible Customer WS09 BH01 BH01 WS04 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ËS ES2 ES1 ES1 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate 0.20-0.60-0.40-PR - Process Water 0.80 - 1.20 SA - Saline Water Depth (m) - 0.60 TE - Trade Effluent - 0.80 - 0.90 TS - Treated Sewage US - Untreated Sewage 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 1kg TUB with Handle (ALE260) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S GRO by GC-FID (W) All NDPs: 0 Tests: 2 X Х Hexavalent Chromium (s) All NDPs: 0 Tests: 4 X Х Х Х Mercury Dissolved All NDPs: 0 Tests: 2 Х Х Metals in solid samples by OES All NDPs: 0 Tests: 4 Х Х Х Х Nitrite by Kone (w) All NDPs: 0 Tests: 2 Х Х PAH by GCMS All NDPs: 0 Tests: 4 Х Χ Х Х PAH in waters by GC-MS (diss.filt) All NDPs: 0 Tests: 2 Х рΗ All NDPs: 0 Tests: 4 X X X X pH Value of Filtered Water All NDPs: 0 Tests: 2 X X Phenols by HPLC (S) All NDPs: 0 Tests: 4 X X X Х Phenols by HPLC (W) All NDPs: 0 Tests: 2 Х Х All Sample description NDPs: 0 Tests: 4 Х Х Х Х Total Organic Carbon All NDPs: 0 Tests: 4 Χ X X Χ TPH CWG Filtered (W) All NDPs: 0 Tests: 2 Х X TPH CWG GC (S) All NDPs: 0 Tests: 4 Х Χ X X

CERTIFICATE OF ANALYSIS

(ALS)

SDG: A110489-6-1 200610-85 Client Reference: Report Number: 556416 Trinity Fields C20/345 Superseded Report: Location: Order Number: Results Legend 22281405 22281410 22281394 22281389 Lab Sample No(s) X Test No Determination Possible Customer BH01 BH01 WS04 WS09 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ES1 ES2 ES1 ES1 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.40 - 0.60 0.20 - 0.80 0.80 - 1.20 0.60 - 0.90 SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 60g VOC (ALE215) RE - Recreational Water 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB with Handle (ALE260) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S S VOC MS (S) All NDPs: 0 Tests: 4 Χ X Х Х

CERTIFICATE OF ANALYSIS

SDG: 200610-85 Client Reference: Location: Trinity Fields Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Sample Descriptions

Grain Sizes

very fine <	0.063mm fine 0.0	063mm - 0.1mm m	edium 0.1mm	n - 2mm coa	rse 2mm - 1	0mm very coa
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2
22281405	BH01	0.20 - 0.80	Light Brown	Sandy Clay	Stones	Vegetation
22281410	BH01	0.80 - 1.20	Dark Brown	Clay Loam	Stones	Vegetation
22281394	WS04	0.60 - 0.90	Dark Brown	Sandy Loam	Stones	Vegetation
22281389	WS09	0.40 - 0.60	Dark Brown	Clay Loam	Stones	Vegetation

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALS

SDG: 200610-85 Location: Trinity Fields

Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Results Legend # ISO17025 accredited.		Customer Sample Ref.	BH01	BH01	WS04	WS09	
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m)	0.20 - 0.80	0.80 - 1.20	0.60 - 0.90	0.40 - 0.60	
* Subcontracted - refer to subcontractor report	for	Sample Type Date Sampled	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	
accreditation status. ** % recovery of the surrogate standard to check	s the	Sample Time					
efficiency of the method. The results of individual compounds within samples aren't corrected for		Date Received	10/06/2020 200610-85	10/06/2020 200610-85	10/06/2020 200610-85	10/06/2020 200610-85	
recovery (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	22281405	22281410	22281394	22281389	
1-3+§@ Sample deviation (see appendix)		AGS Reference	ES1	ES2	ES1	ES1	
Component	LOD/Units	Method	2.2	0.7	4.4		
Moisture Content Ratio (% of as	%	PM024	3.6	6.7	14	5.9	
received sample)	40.04 //	TM062 (S)	<0.01	<0.01	<0.01	<0.01	
Phenol	<0.01 mg/kg	11002 (5)	<0.01 M	V0.01	<0.01 M	<0.01 M	
Fraction Organic Carbon (FOC)	<0.002	TM132	0.00974	0.0076	0.0145	0.0144	
Fraction Organic Carbon (FOC)	\0.00 <u>2</u>	1101132	0.00974 #	#	0.0145	0.01 44 #	
pH	1 pH Units	TM133	8.33	8.56	7.64	7.63	
Pri	1 pri onito	1111100	0.00 M	0.00 M	7.04 M	7.00 M	
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6	<0.6	
Cincinani, Floraraioni	0.099		#	#	#	#	
Cyanide, Easily liberatable (low	<0.5 mg/kg	TM153	<0.5	<0.5	<0.5	<0.5	
level)							
Chromium, Trivalent	<0.9 mg/kg	TM181	<0.9	2.78	8.07	<0.9	
Arsenic	<0.6 mg/kg	TM181	8.25	4.76	14.1	12.3	
			М	М	М	М	
Beryllium	<0.01 mg/kg	TM181	0.439	0.281	0.453	0.743	
			М	М	М	M	
Cadmium	<0.02 mg/kg	TM181	0.478	0.151	0.308	0.364	
			М	М	M	M	
Chromium	<0.9 mg/kg	TM181	<0.9	2.78	8.07	<0.9	
			М	М	M	M	
Copper	<1.4 mg/kg	TM181	7.81	3.66	12.2	22.1	
			M	M	M	M	
Lead	<0.7 mg/kg	TM181	19.2	6.88	28.6	27.1	
			M	M	M	M	
Mercury	<0.14 mg/kg	TM181	<0.14	<0.14	<0.14	<0.14	
Nº 1 - 1	.0.0 //	T1404	M	M	M	M	
Nickel	<0.2 mg/kg	TM181	13.5	11.7	17.8	31.1	
Colonium	<1 mailes	TM181	<1 M	<1 M	1.27	<1 M	
Selenium	<1 mg/kg	TIVITOT	- "	\ #	1.27	<u> </u>	
Vanadium	<0.2 mg/kg	TM181	9	5.77	19.2	14.5	
Variation	-0.2 mg/ng	111101	#	#	#	#	
Zinc	<1.9 mg/kg	TM181	72.2	37.2	66	430	
			M			M	
Boron, water soluble	<1 mg/kg	TM222	<1	<1	<1	<1	
			М	М	М	М	
Water Soluble Sulphate as SO4	<0.004 g/l	TM243	0.0161	0.0541	<0.004	0.0395	
2:1 Extract			М	M	M	M	
		+					
					<u> </u>		<u> </u>
		7					

ALS

 SDG:
 200610-85
 Client Reference:
 A110489-6-1
 Report Number:
 556416

 Location:
 Trinity Fields
 Order Number:
 C20/345
 Superseded Report:

PAH by GCMS							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	BH01	BH01	WS04	WS09	
M mCERTS accredited. ag Agueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m)	0.20 - 0.80	0.80 - 1.20	0.60 - 0.90	0.40 - 0.60	
* Subcontracted - refer to subcontractor report	t for	Sample Type Date Sampled	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	
accreditation status. ** % recovery of the surrogate standard to check	k the	Sample Time					
efficiency of the method. The results of indivi- compounds within samples aren't corrected for		Date Received SDG Ref	10/06/2020 200610-85	10/06/2020 200610-85	10/06/2020 200610-85	10/06/2020 200610-85	
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	22281405	22281410	22281394	22281389	
1-3+§@ Sample deviation (see appendix)		AGS Reference	ES1	ES2	ES1	ES1	
Component	LOD/Units		20	05.0	20.5	00.7	
Naphthalene-d8 % recovery**	%	TM218	89	85.8	86.5	89.7	
Acenaphthene-d10 % recovery**	%	TM218	88.3	87.3	87.2	89.3	
Phenanthrene-d10 % recovery**	%	TM218	87	89	86.2	88	
Chrysene-d12 % recovery**	%	TM218	89.8	91.1	84.5	89.4	
Perylene-d12 % recovery**	%	TM218	85.1	85.7	78.5	85	
Naphthalene	<0.009 mg/kg	TM218	<0.009	0.0109 M M	<0.009 M	<0.009 M	
Acenaphthylene	<0.012 mg/kg	TM218	<0.012	0.0132 M M	<0.012 M	<0.012 M	
Acenaphthene	<0.008	TM218	<0.008	<0.008	<0.008	<0.008	
	mg/kg	1111210		M M	10.000 M	10.000 M	 <u> </u>
Fluorene	<0.01 mg/k	g TM218	<0.01	0.0156 M M	<0.01	<0.01	
Phenanthrene	<0.015 mg/kg	TM218	0.0287	0.132 M M	<0.015 M	<0.015 M	
Anthracene	<0.016 mg/kg	TM218	<0.016	0.0309 M M	<0.016	<0.016	
Fluoranthene	<0.017 mg/kg	TM218	0.0721	0.184 M M	0.0423 M	<0.017	
Pyrene	<0.015 mg/kg	TM218	0.0611	0.143 M M	0.0317 M	<0.015	
Benz(a)anthracene	<0.014 mg/kg	TM218	0.0521	0.117 M M	0.0278 M	<0.014	
Chrysene	<0.01 mg/k	g TM218	0.0662	0.142 M M	0.0418 M	<0.01	
Benzo(b)fluoranthene	<0.015 mg/kg	TM218	0.1	0.162 M M	0.0537 M	<0.015 M	
Benzo(k)fluoranthene	<0.014 mg/kg	TM218	0.0304	0.0509 M M	0.0169 M	<0.014 M	
Benzo(a)pyrene	<0.015 mg/kg	TM218	0.0556	0.095 M M	0.0266 M	<0.015 M	
Indeno(1,2,3-cd)pyrene	<0.018 mg/kg	TM218	0.0496	0.0718 M M	0.0228 M	<0.018 M	
Dibenzo(a,h)anthracene	<0.023 mg/kg	TM218	<0.023	<0.023 M M	<0.023	<0.023	
Benzo(g,h,i)perylene	<0.024 mg/kg	TM218	0.0456	0.0574 M M	<0.024 M	<0.024 M	
PAH, Total Detected USEPA 16	<0.118 mg/kg	TM218	0.562	1.23	0.264	<0.118	

200610-85 Trinity Fields SDG: Location:

Client Reference: Order Number:

A110489-6-1 C20/345

Report Number: Superseded Report:

556416

TPH CWG (S)

TPH CWG (S)							
Results Legend # IS017025 accredited.		Customer Sample Ref.	BH01	BH01	WS04	WS09	
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m)	0.20 - 0.80	0.80 - 1.20	0.60 - 0.90	0.40 - 0.60	
* Subcontracted - refer to subcontractor report	for	Sample Type Date Sampled	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	
accreditation status. ** % recovery of the surrogate standard to check	the	Sample Time					
efficiency of the method. The results of individ compounds within samples aren't corrected for		Date Received	10/06/2020 200610-85	10/06/2020 200610-85	10/06/2020 200610-85	10/06/2020 200610-85	
recovery (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	22281405	22281410	22281394	22281389	
1-3+§@ Sample deviation (see appendix)		AGS Reference	ES1	ES2	ES1	ES1	
Component	LOD/Units						
GRO Surrogate % recovery**	%	TM089	95.4	99.4	93.8	101	
Aliphatics >C5-C6	<0.01 mg/k	rg TM089	<0.01	<0.01	<0.01	<0.01	
Aliphatics >C6-C8	<0.01 mg/k	g TM089	<0.01	0.0257	<0.01	<0.01	
Aliphatics >C8-C10	<0.01 mg/k	kg TM089	<0.01	0.0182	<0.01	<0.01	
Aliphatics >C10-C12	<1 mg/kg	TM414	<1	<1	<1	<1	
Aliphatics >C12-C16	<1 mg/kg		<1	<1	<1	<1	
Aliphatics >C16-C21	<1 mg/kg		<1	1.72	<1	<1	
Aliphatics >C21-C35	<1 mg/kg		17.2	28.2	4.25	1.66	
Aliphatics >C35-C44	<1 mg/kg		<1	2.95	<1	<1	
Total Aliphatics >C10-C44	<5 mg/kg	TM414	18.9	33	<5	<5	
Total Aliphatics & Aromatics >C10-C44	<10 mg/kg	g TM414	34.1	44.6	<10	<10	
Aromatics >EC5-EC7	<0.01 mg/k	kg TM089	<0.01	<0.01	<0.01	<0.01	
Aromatics >EC7-EC8	<0.01 mg/k	g TM089	<0.01	<0.01	<0.01	<0.01	
Aromatics >EC8-EC10	<0.01 mg/k	g TM089	<0.01	0.0118	<0.01	<0.01	
Aromatics > EC10-EC12	<1 mg/kg	TM414	<1	<1	<1	<1	
Aromatics > EC12-EC16	<1 mg/kg	TM414	<1	<1	<1	<1	
Aromatics > EC16-EC21	<1 mg/kg	TM414	<1	<1	<1	<1	
Aromatics > EC21-EC35	<1 mg/kg	TM414	12.1	8.93	1.34	<1	
Aromatics >EC35-EC44	<1 mg/kg	TM414	2.17	1.99	<1	<1	
Aromatics > EC40-EC44	<1 mg/kg	TM414	<1	1.06	<1	<1	
Total Aromatics > EC10-EC44	<5 mg/kg	TM414	15.2	11.6	<5	<5	
Total Aliphatics & Aromatics >C5-C44	<10 mg/kg	g TM414	34.1	44.6	<10	<10	
Total Aliphatics >C5-C10	<0.05 mg/k	rg TM089	<0.05	<0.05	<0.05	<0.05	
Total Aromatics >EC5-EC10	<0.05 mg/k	rg TM089	<0.05	<0.05	<0.05	<0.05	
GRO >C5-C10	<0.02 mg/k	rg TM089	<0.02	<0.02	<0.02	<0.02	
				<u> </u>			

200610-85 Trinity Fields A110489-6-1 C20/345 Report Number: Superseded Report: SDG: Client Reference: 556416 Location: Order Number:

	<u> </u>		.,					
VOC MS	(S)							
	Results Legend 7025 accredited.		Customer Sample Ref.	BH01	BH01	WS04	WS09	
M mCER aq Aquec	RTS accredited. ous / settled sample.							
diss.filt Dissol	olved / filtered sample. / unfiltered sample.		Depth (m)	0.20 - 0.80	0.80 - 1.20	0.60 - 0.90	0.40 - 0.60	
* Subco	ontracted - refer to subcontractor report	for	Sample Type Date Sampled	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	Soil/Solid (S) 08/06/2020	
	editation status. covery of the surrogate standard to check	the	Sample Time					
efficie	ency of the method. The results of individ bounds within samples aren't corrected for	lual	Date Received	10/06/2020	10/06/2020	10/06/2020	10/06/2020	
recove	very	n tile	SDG Ref	200610-85 22281405	200610-85 22281410	200610-85 22281394	200610-85 22281389	
(F) Trigge 1-3+§@ Sampl	er breach confirmed ple deviation (see appendix)		Lab Sample No.(s) AGS Reference	ES1	ES2	ES1	ES1	
Component		LOD/Unit						
Dibromofluor		%	TM116	111	110	107	112	
Toluene-d8**	*	%	TM116	97.7	93	97.7	94.6	
4-Bromofluoi	robenzene**	%	TM116	94.5	71.3	96.4	82.7	
Methyl Tertia	ary Butyl Ether	<0.01 mg/	kg TM116	<0.2	<0.01	<0.2	<0.01	
,	,,			N			M	
Benzene		<0.009	TM116	<0.18	<0.009	<0.18	<0.009	
DONEONO		mg/kg	111110	10.10 N			M	
Toluene		<0.007	TM116	<0.14	<0.007	<0.14	<0.007	
i oluciic		mg/kg	1101110	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			<0.007 M	
Ethylbenzen	10	<0.004	TM116	<0.08	<0.004	<0.08	<0.004	
Lutyibelizelli	10	mg/kg	1101110	<0.06 N			<0.004 M	
n/m V			lica TM440					
p/m-Xylene		<0.01 mg/	kg TM116	<0.2	<0.01	<0.2	<0.01	
o Vidor -		ZO 04 1	lica TM440	± 40.2			# <0.01	\vdash
o-Xylene		<0.01 mg/	kg TM116	<0.2	<0.01	<0.2	<0.01	
				N	1 M	M	М	
					1			
					1			
					1			
					1			
					1			
					1			
					1			
			_					
					1			
					1			
					1			
			+					$\overline{}$
					1			
			+		 			
					1			
			_		+			
					1			
			_		+			
					1			

CERTIFICATE OF ANALYSIS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Asbestos Identification - Solid Samples

Resul	lts Legend										
# ISO17025 ac	ccredited.										
M mCERTS ac	credited.										
* Subcontract	ted test.	Date of Analysis	Analysed By	Comments	Amosite	Chrysotile	Crocidolite	Fibrous	Fibrous	Fibrous	Non-Asbestos
(F) Trigger brea	ach confirmed				(Brown)	(White)	(Blue) Asbestos	Actinolite	Anthophyllite	Tremolite	Fibre
1-5&+§@ Sample dev					Asbestos	Asbestos	(,				
Cust. Sample Ref.	BH01ES1	17/06/2020	Marcin			Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
	0.20 - 0.80	17/06/2020		_	Not Detected		1	1			Not Detected
Depth (m)	0.20 - 0.80 SOLID		Magdziarek		(#)	(#)	(#)	(#)	(#)	(#)	
Sample Type											
Date Sampled	08/06/2020 00:00:00										
Date Receieved	10/06/2020 12:16:00										
SDG	200610-85										
Original Sample	22281405										
Method Number	TM048										
Cust. Sample Ref.	BH01ES2	17/06/2020	Marcin	-	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
Depth (m)	0.80 - 1.20		Magdziarek		(#)	(#)	(#)	(#)	(#)	(#)	
Sample Type	SOLID		. lagaziai cit		(")	(")	(")	(")	(")	(")	
Date Sampled	08/06/2020 00:00:00										
Date Receieved	10/06/2020 12:16:00										
SDG	200610-85										
Original Sample	22281410										
Method Number	TM048										
ricalou Humber	11.0.0										
Cust. Sample Ref.	WS04ES1	17/06/2020	Marcin	_	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
Depth (m)	0.60 - 0.90	17/00/2020		_	1		1	1			NOL Detected
Sample Type	SOLID		Magdziarek		(#)	(#)	(#)	(#)	(#)	(#)	
Date Sampled	08/06/2020 00:00:00										
· ·											
Date Receieved	10/06/2020 12:16:00										
SDG	200610-85										
Original Sample	22281394										
Method Number	TM048										
Cust. Sample Ref.	WS09ES1	17/06/2020	Marcin	-	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
Depth (m)	0.40 - 0.60		Magdziarek		(#)	(#)	(#)	(#)	(#)	(#)	
Sample Type	SOLID				` ′		` ′	` ´	` ´	` ′	
Date Sampled	08/06/2020 00:00:00										
Date Receieved	10/06/2020 12:16:00										
SDG	200610-85										
Original Sample	22281389										
Method Number	TM048										
					1						

Trinity Fields

Client Reference: Order Number:

A110489-6-1 C20/345

Report Number: Superseded Report: 556416

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS REF: BS EN 12457/2 Trinity Fields **Client Reference Site Location** 8.59 Mass Sample taken (kg) 0.098 **Natural Moisture Content (%)** 92.1 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** Particle Size <4mm >95%

Case SDG 200610-85 Lab Sample Number(s) 22281389 **Sampled Date** 08-Jun-2020 WS09 ES1 **Customer Sample Ref.** Depth (m) 0.40 - 0.60

Location:

Eluate Analysis	C ₂ Conc ⁿ in 10:1	eluate (mg/l)	A ₂ 10:1 conc ⁿ leached (mg/kg)				
	Result	Limit of Detection	Result	Limit of Detection			
Aliphatics >C12-C16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Nitrite as NO2	<0.05	< 0.05	<0.5	<0.5	-	-	-
Sulphate (soluble)	<2	<2	<20	<20	-	-	-
Chloride	<2	<2	<20	<20	-	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	-	-	-
Mercury Dissolved (CVAF)	0.0000109	<0.00001	0.000109	<0.0001	-	-	-
Antimony	<0.001	<0.001	<0.01	<0.01	-	-	-
Naphthalene (diss.filt)	<0.00001	<0.0001	<0.0001	<0.0001	-	-	-
Total Ammonia as NH3	<0.2	<0.2	<2	<2	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.5	<0.5	-	-	-
Acenaphthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Arsenic	<0.0005	<0.0005	<0.005	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<3	<3	-	-	-
Acenaphthylene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Barium	0.168	<0.0002	1.68	<0.002	-	-	-
Nitrate as NO3	0.958	<0.3	9.58	<3	-	-	-
Phenol by HPLC (W)	<0.002	<0.002	<0.02	<0.02	-	-	-
Beryllium	<0.0001	<0.0001	<0.001	<0.001	-	-	-
Fluoranthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Anthracene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Boron	0.0259	<0.01	0.259	<0.1	-	-	-
Phenanthrene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Total Alkalinity Filtered as CaCO3	11	<2	110	<20	-	-	-
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	-	-	-
Fluorene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Chrysene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-

Leach Test Information

Date Prepared	10-Jun-2020
pH (pH Units)	9.22
Conductivity (µS/cm)	30.40
Temperature (°C)	21.20
Volume Leachant (Litres)	0.892

Mcerts Certification does not apply to leachates 24/06/2020 12:24:04

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS Client Reference Site Location Trinity Fields Mass Sample taken (kg) 0.098 Natural Moisture Content (%) 8.59 Mass of dry sample (kg) 0.090 Dry Matter Content (%) 92.1 Particle Size <4mm >95%

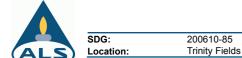
 Case

 SDG
 200610-85

 Lab Sample Number(s)
 22281389

 Sampled Date
 08-Jun-2020

 Customer Sample Ref.
 WS09 ES1


 Depth (m)
 0.40 - 0.60

Eluate Analysis	C ₂ Conc ⁿ in 10:1	eluate (mg/l)	A 2 10:1 conc ⁿ le	ached (mg/kg)			
	Result	Limit of Detection	Result	Limit of Detection			
Pyrene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Benzo(a)anthracene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Chromium	<0.001	<0.001	<0.01	<0.01	-	_	-
Benzo(b)fluoranthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Benzo(k)fluoranthene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Benzo(a)pyrene (diss.filt)	<0.000002	<0.000002	<0.00002	<0.00002	-	-	-
Copper	0.000993	< 0.0003	0.00993	< 0.003	-	-	-
Dibenzo(a,h)anthracene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Lead	0.000342	<0.0002	0.00342	<0.002	-	-	-
Benzo(g,h,i)perylene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Indeno(1,2,3-cd)pyrene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Molybdenum	< 0.003	<0.003	<0.03	< 0.03	-	_	-
PAH 16 EPA Total by GCMS (diss.filt)	<0.000082	<0.000082	<0.00082	<0.00082	-	-	-
Nickel	<0.0004	<0.0004	<0.004	<0.004	-	-	-
Selenium	<0.001	<0.001	<0.01	<0.01	-	-	-
Zinc	0.00524	<0.001	0.0524	<0.01	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	<0	-	<0	-	-	-
GRO TOT (C5-C12)	<0.05	<0.05	<0.5	<0.5	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.1	<0.1	-	-	-
MTBE GC-FID	< 0.003	< 0.003	<0.03	<0.03	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.1	<0.1	-	-	-
Benzene by GC	<0.007	<0.007	<0.07	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.04	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.05	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.08	<0.08	-	-	-
o Xylene by GC	< 0.003	<0.003	<0.03	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.11	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.28	<0.28	-	-	-

Leach Test Information

Date Prepared	10-Jun-2020
pH (pH Units)	9.22
Conductivity (µS/cm)	30.40
Temperature (°C)	21.20
Volume Leachant (Litres)	0.892

Mcerts Certification does not apply to leachates 24/06/2020 12:24:04

Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESULTS Client Reference Site Location Trinity Fields Mass Sample taken (kg) 0.095 Natural Moisture Content (%) 4.87 Mass of dry sample (kg) 0.090 Dry Matter Content (%) 95.4 Particle Size <4mm >95%

 Case

 SDG
 200610-85

 Lab Sample Number(s)
 22281405

 Sampled Date
 08-Jun-2020

 Customer Sample Ref.
 BH01 ES1

 Depth (m)
 0.20 - 0.80

Eluate Analysis	C ₂ Conc ⁿ in 10:1 e	eluate (mg/l)	A ₂ 10:1 conc ⁿ leached (mg/kg)				
	Result	Limit of Detection	Result	Limit of Detection			
Aliphatics >C12-C16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.1	<0.1	-	-	-
TPH (Total Aliphatics + Total Aromatics) > C5-C35	<0.01	<0.01	<0.1	<0.1	-	-	-
Nitrite as NO2	0.235	<0.05	2.35	<0.5	-	-	-
Sulphate (soluble)	3.9	<2	39	<20	-	-	-
Chloride	<2	<2	<20	<20	-	-	-
Dissolved Organic Carbon	5.04	<3	50.4	<30	-	-	-
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	-	-	-
Antimony	<0.001	<0.001	<0.01	<0.01	-	-	-
Naphthalene (diss.filt)	<0.00001	<0.00001	<0.0001	<0.0001	_	-	-
Total Ammonia as NH3	<0.2	<0.2	<2	<2	-	-	-
Total Cyanide (W)	< 0.05	<0.05	<0.5	<0.5	-	-	-
Acenaphthene (diss.filt)	<0.00005	<0.00005	<0.00005	<0.00005	-	-	-
Arsenic	0.000648	<0.0005	0.00648	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<3	<3	-	-	-
Acenaphthylene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Barium	0.308	<0.0002	3.08	<0.002	-	-	-
Nitrate as NO3	1.52	<0.3	15.2	<3	-	-	-
Phenol by HPLC (W)	<0.002	<0.002	<0.02	<0.02	-	-	-
Beryllium	<0.0001	<0.0001	<0.001	<0.001	-	-	-
Fluoranthene (diss.filt)	0.00000676	<0.000005	0.0000676	<0.00005	-	-	-
Anthracene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Boron	0.0315	<0.01	0.315	<0.1	-	-	-
Phenanthrene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Total Alkalinity Filtered as CaCO3	70	<2	700	<20	-	-	-
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	-	-	-
Fluorene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-
Chrysene (diss.filt)	<0.000005	<0.000005	<0.00005	<0.00005	-	-	-

Leach Test Information

Date Prepared	10-Jun-2020
pH (pH Units)	8.02
Conductivity (µS/cm)	130.00
Temperature (°C)	21.00
Volume Leachant (Litres)	0.896

Mcerts Certification does not apply to leachates 24/06/2020 12:24:04

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

CEN 10:1 SINGLE STAGE LEACHATE TEST

CEN ANALYTICAL RESI	JLTS		REF : BS EN 12457/2
Client Reference		Site Location	Trinity Fields
Mass Sample taken (kg)	0.095	Natural Moisture Content (%)	4.87
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	95.4
Particle Size <4mm	>95%		

 Case

 SDG
 200610-85

 Lab Sample Number(s)
 22281405

 Sampled Date
 08-Jun-2020

 Customer Sample Ref.
 BH01 ES1

 Depth (m)
 0.20 - 0.80

Eluate Analysis	C ₂ Conc ⁿ in 10:1	eluate (mg/l)	A ₂ 10:1 conc ⁿ leached (mg/kg)				
	Result	Limit of Detection	Result	Limit of Detection			
Pyrene (diss.filt)	0.00000571	<0.000005	0.0000571	<0.00005	-	-	-
Benzo(a)anthracene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Chromium	<0.001	<0.001	<0.01	<0.01		-	-
Benzo(b)fluoranthene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Benzo(k)fluoranthene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Benzo(a)pyrene (diss.filt)	<0.000002	<0.000002	<0.00002	<0.00002	-	_	-
Copper	0.00294	< 0.0003	0.0294	< 0.003	-	-	-
Dibenzo(a,h)anthracene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Lead	<0.0002	<0.0002	<0.002	<0.002	-	-	-
Benzo(g,h,i)perylene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Indeno(1,2,3-cd)pyrene (diss.filt)	<0.000005	<0.00005	<0.00005	<0.00005	-	-	-
Molybdenum	0.00383	< 0.003	0.0383	< 0.03		-	-
PAH 16 EPA Total by GCMS (diss.filt)	<0.000082	<0.000082	<0.00082	<0.00082	-	-	-
Nickel	0.000543	<0.0004	0.00543	<0.004	-	-	-
Selenium	<0.001	<0.001	<0.01	<0.01		-	-
Zinc	0.00522	<0.001	0.0522	<0.01	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	<0	-	<0	-	-	-
GRO TOT (C5-C12)	<0.05	< 0.05	<0.5	<0.5	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.1	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.1	<0.1	-	-	-
MTBE GC-FID	< 0.003	<0.003	< 0.03	< 0.03	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.1	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.1	<0.1	-	-	-
Benzene by GC	<0.007	<0.007	<0.07	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.04	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.05	< 0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.08	<0.08	-	-	-
o Xylene by GC	< 0.003	<0.003	< 0.03	< 0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.11	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.28	<0.28	-	-	-

Leach Test Information

Date Prepared	10-Jun-2020
pH (pH Units)	8.02
Conductivity (µS/cm)	130.00
Temperature (°C)	21.00
Volume Leachant (Litres)	0.896

Mcerts Certification does not apply to leachates 24/06/2020 12:24:04

 SDG:
 200610-85
 Client Reference:
 A110489-6-1
 Report Number:
 556416

 Location:
 Trinity Fields
 Order Number:
 C20/345
 Superseded Report:

Table of Results - Appendix

		Results - Appendix
Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM243		Mixed Anions In Soils By Kone
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC
TM414	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

CERTIFICATE OF ANALYSIS

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Test Completion Dates

	rest completio			
Lab Sample No(s)	22281405	22281410	22281394	22281389
Customer Sample Ref.	BH01	BH01	WS04	WS09
Guotomor Gumpio Roi.				
AGS Ref.	ES1	ES2	ES1	ES1
Depth	0.20 - 0.80	0.80 - 1.20	0.60 - 0.90	0.40 - 0.60
Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Alkalinity Filtered as CaCO3	16-Jun-2020			16-Jun-2020
Ammoniacal Nitrogen	15-Jun-2020			15-Jun-2020
Anions by Kone (soil)	12-Jun-2020	15-Jun-2020	12-Jun-2020	12-Jun-2020
Anions by Kone (w)	16-Jun-2020			16-Jun-2020
Asbestos ID in Solid Samples	17-Jun-2020	17-Jun-2020	17-Jun-2020	17-Jun-2020
Boron Water Soluble	12-Jun-2020	12-Jun-2020	12-Jun-2020	12-Jun-2020
CEN 10:1 Leachate (1 Stage)	11-Jun-2020			11-Jun-2020
CEN Readings	16-Jun-2020			16-Jun-2020
Chromium III	17-Jun-2020	17-Jun-2020	17-Jun-2020	17-Jun-2020
Cyanide Comp/Free/Total/Thiocyanate	16-Jun-2020	16-Jun-2020	16-Jun-2020	16-Jun-2020
Dissolved Metals by ICP-MS	16-Jun-2020			16-Jun-2020
Dissolved Organic/Inorganic Carbon	17-Jun-2020			17-Jun-2020
EPH CWG (Aliphatic) Filtered GC (W)	16-Jun-2020			16-Jun-2020
EPH CWG (Aromatic) Filtered GC (W)	16-Jun-2020			16-Jun-2020
EPH CWG GC (S)	22-Jun-2020	24-Jun-2020	22-Jun-2020	24-Jun-2020
GRO by GC-FID (S)	15-Jun-2020	15-Jun-2020	15-Jun-2020	15-Jun-2020
GRO by GC-FID (W)	15-Jun-2020			15-Jun-2020
Hexavalent Chromium (s)	11-Jun-2020	11-Jun-2020	15-Jun-2020	11-Jun-2020
Mercury Dissolved	15-Jun-2020			15-Jun-2020
Metals in solid samples by OES	17-Jun-2020	17-Jun-2020	17-Jun-2020	17-Jun-2020
Moisture at 105C	10-Jun-2020			10-Jun-2020
Nitrite by Kone (w)	15-Jun-2020			15-Jun-2020
PAH by GCMS	15-Jun-2020	15-Jun-2020	12-Jun-2020	12-Jun-2020
PAH in waters by GC-MS (diss.filt)	16-Jun-2020			16-Jun-2020
рН	12-Jun-2020	12-Jun-2020	12-Jun-2020	12-Jun-2020
pH Value of Filtered Water	16-Jun-2020			16-Jun-2020
Phenols by HPLC (S)	15-Jun-2020	12-Jun-2020	12-Jun-2020	15-Jun-2020
Phenols by HPLC (W)	16-Jun-2020			17-Jun-2020
Sample description	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020
Total Organic Carbon	15-Jun-2020	15-Jun-2020	15-Jun-2020	15-Jun-2020
TPH CWG Filtered (W)	16-Jun-2020			16-Jun-2020
TPH CWG GC (S)	22-Jun-2020	24-Jun-2020	22-Jun-2020	24-Jun-2020
VOC MS (S)	16-Jun-2020	15-Jun-2020	16-Jun-2020	15-Jun-2020

Validated

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

ASSOCIATED AQC DATA

Alkalinity Filtered as CaCO3

Component	Method Code	QC 2252	QC 2275
Total Alkalinity Filtered as CaCO3	TM043	101.01 95.62 : 106.88	110.0 100.35 : 114.15

Ammoniacal Nitrogen

Component	Method Code	QC 2222
Ammoniacal Nitrogen as N	TM099	100.0 93.14 : 108.60

Anions by Kone (soil)

Component	Method Code	QC 2217
Chloride (soluble)	TM243	94.3 77.23 : 120.97
Water Soluble Sulphate as SO4 2:1 Extract	TM243	94.86 75.60 : 131.10

Anions by Kone (w)

Component	Method Code	QC 2280
Chloride	TM184	101.0 94.04 : 108.61
Sulphate (soluble)	TM184	99.2 91.99 : 109.30
TON as NO3	TM184	101.5 92.98 : 109.90

Boron Water Soluble

Component	Method Code	QC 2210	QC 2260
Water Soluble Boron	TM222	101.0	97.0
		85.80 : 112.50	85.80 : 112.50

Cyanide Comp/Free/Total/Thiocyanate

Component	Method Code	QC 2297	QC 2229	QC 2260	QC 2251	QC 2261
Free Cyanide	TM153	100.99 82.09 : 117.91	102.97 82.09 : 117.91	94.75 82.09 : 117.91		
Free Cyanide (W)	TM227				109.0 90.50 : 114.50	103.75 90.50 : 114.50
Thiocyanate	TM153	105.13 90.48 : 109.52	105.77 90.48 : 109.52	96.15 90.48 : 109.52		

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Cyanide Comp/Free/Total/Thiocyanate

	,	QC 2297	QC 2229	QC 2260	QC 2251	QC 2261
Thiocyanate (W)	TM227				101.0 90.50 : 113.00	98.25 90.50 : 113.00
Total Cyanide	TM153	105.59 86.12 : 113.88	103.5 86.12 : 113.88	91.61 86.12 : 113.88		
Total Cyanide (W)	TM227				108.25 91.75 : 112.75	108.0 91.75 : 112.75

Dissolved Metals by ICP-MS

Component Method Code QC 2221 Aluminium TM152 104.0 91.36 : 108.58 99.17 88.37 : 130.57 88.37 : 130.57 Arsenic TM152 99.17 92.62 : 113.52 99.17 92.67 : 113.52 99.17 92.62 : 113.52 97.67 88.14 : 108.73 105.17 89.98 : 116.88 105.17 89.98 : 116.88 101.17 92.62 : 115.02 109.67 86.31 : 120.88 101.17 92.62 : 115.02 109.67 86.31 : 120.88 101.5 93.85 : 111.65 94.0 89.20 : 126.91 101.5 93.85 : 111.65 100.33 85.01 : 114.87 100.33 85.01 : 114.87 100.33 85.01 : 114.87 103.33 93.02 : 113.86 102.17 91.11 : 116.98 104.0 102.17 91.11 : 116.98 103.33 93.02 : 113.86 104.04 106.67 91.30 : 123.00			
Magnesium Mickel Magnesium Mickel Magnesium Mickel M			QC 2221
Antimony TM152 99.17 88.37: 130.57 99.17 88.37: 130.57 99.17 92.62: 113.52 99.17 92.62: 113.52 99.17 92.62: 113.52 105.17 88.14: 108.73 105.17 89.98: 116.88 101.17 Bismuth TM152 101.17 92.62: 115.02 109.67 86.31: 120.88 101.5 93.85: 111.65 93.85: 111.65 Calcium TM152 101.0 89.20: 126.91 101.0 92.22: 109.85 101.0 Cobalt TM152 100.33 85.01: 114.87 100.33 85.01: 114.87 101.0 89.87: 119.73 101.0 89.87: 119.73 103.33 93.02: 113.86 102.17 91.11: 116.98 106.67 91.30: 123.00 106.67 91.30: 123.00 106.0 89.00: 116.61 106.0 Manganese TM152 106.0 Molybdenum TM152 98.5 89.07: 110.96 106.0	Aluminium	TM152	
Arsenic TM152 99.17 92.62:113.52 Barium TM152 97.67 88.14:108.73 Beryllium TM152 105.17 89.98:116.88 Bismuth TM152 101.17 92.62:115.02 Boron TM152 109.67 86.31:120.88 Cadmium TM152 101.5 93.85:111.65 Calcium TM152 101.0 92.22:109.85 Cobalt TM152 100.33 85.01:114.87 Copper TM152 101.0 89.87:119.73 Iron TM152 103.33 93.02:113.86 Lead TM152 102.17 91.11:116.98 Lithium TM152 106.67 91.30:123.00 Magnesium TM152 98.0 89.60:116.61 Manganese TM152 106.8 Molybdenum TM152 98.5 89.07:110.96 Nickel TM152 102.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 97.33 89.24:114.18 Potassium TM152 97.33 89.24:114.18			91.36 : 108.58
Arsenic TM152 99.17 92.62 : 113.52 Barium TM152 97.67 88.14 : 108.73 Beryllium TM152 105.17 89.98 : 116.88 Bismuth TM152 101.17 92.62 : 115.02 Boron TM152 109.67 86.31 : 120.88 Cadmium TM152 101.5 93.85 : 111.65 Calcium TM152 94.0 89.20 : 126.91 Chromium TM152 101.0 92.22 : 109.85 Cobalt TM152 100.33 85.01 : 114.87 Copper TM152 101.0 89.87 : 119.73 Iron TM152 103.33 93.02 : 113.86 Lead TM152 102.17 91.11 : 116.98 Lithium TM152 106.67 91.30 : 123.00 Magnesium TM152 98.0 89.60 : 116.61 Manganese TM152 106.0 93.97 : 112.46 Molybdenum TM152 98.5 89.07 : 110.96 Nickel TM152 97.33 89.24 : 114.18 Phosphorus TM152 94.67 93.30 : 115.55	Antimony	TM152	
Barium TM152 97.67 88.14:108.73 Beryllium TM152 105.17 89.98:116.88 Bismuth TM152 101.17 92.62:115.02 Boron TM152 109.67 86.31:120.88 Cadmium TM152 101.5 93.85:111.65 Calcium TM152 94.0 89.20:126.91 Chromium TM152 101.0 92.22:109.85 Cobalt TM152 100.33 85.01:114.87 Copper TM152 101.0 89.87:119.73 Iron TM152 103.33 93.02:113.86 Lead TM152 102.17 91.11:116.98 Lithium TM152 106.67 91.30:123.00 Magnesium TM152 98.0 89.60:116.61 Manganese TM152 106.0 93.97:112.46 Molybdenum TM152 106.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 97.33 89.24:114.18			88.37 : 130.57
Barium TM152 97.67 88.14:108.73 Beryllium TM152 105.17 89.98:116.88 Bismuth TM152 101.17 92.62:115.02 Boron TM152 109.67 86.31:120.88 Cadmium TM152 101.5 93.85:111.65 Calcium TM152 94.0 89.20:126.91 Chromium TM152 100.0 92.22:109.85 Cobalt TM152 100.33 85.01:114.87 Copper TM152 101.0 89.87:119.73 Iron TM152 103.33 93.02:113.86 Lead TM152 102.17 91.11:116.98 Lithium TM152 106.67 91.30:123.00 Magnesium TM152 98.0 89.60:116.61 Manganese TM152 98.5 89.07:110.96 Nickel TM152 102.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 94.67 93.20:115.55	Arsenic	TM152	99.17
Beryllium			92.62 : 113.52
Beryllium TM152 105.17 89.98:116.88 Bismuth TM152 101.17 92.62:115.02 Boron TM152 109.67 86.31:120.88 Cadmium TM152 101.5 93.85:111.65 Calcium TM152 94.0 89.20:126.91 Chromium TM152 101.0 92.22:109.85 Cobalt TM152 100.33 85.01:114.87 Copper TM152 103.33 93.02:113.86 Lead TM152 103.33 93.02:113.86 Lead TM152 106.67 91.30:123.00 Magnesium TM152 106.67 91.30:123.00 Manganese TM152 98.0 89.60:116.61 Molybdenum TM152 98.5 89.07:112.46 Molybdenum TM152 102.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 94.67 93.20:115.55	Barium	TM152	97.67
Bismuth			88.14 : 108.73
Bismuth	Beryllium	TM152	105.17
Boron			89.98 : 116.88
Boron TM152 109.67 86.31:120.88 Cadmium TM152 101.5 93.85:111.65 Calcium TM152 94.0 89.20:126.91 Chromium TM152 101.0 92.22:109.85 Cobalt TM152 100.33 85.01:114.87 Copper TM152 101.0 89.87:119.73 Iron TM152 103.33 93.02:113.86 Lead TM152 102.17 91.11:116.98 Lithium TM152 106.67 91.30:123.00 Magnesium TM152 98.0 89.60:116.61 Manganese TM152 106.0 93.97:112.46 Molybdenum TM152 98.5 89.07:110.96 Nickel TM152 102.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 94.67 93.20:115.55	Bismuth	TM152	101.17
Cadmium TM152 101.5 93.85:111.65 93.85:111.65 Calcium TM152 94.0 89.20:126.91 89.20:126.91 Chromium TM152 101.0 92.22:109.85 100.33 85.01:114.87 100.33 Copper TM152 103.33 93.02:113.86 102.17 91.11:116.98 102.17 91.11:116.98 106.67 91.30:123.00 89.00:116.61 Magnesium TM152 98.0 89.60:116.61 93.97:112.46 Molybdenum TM152 98.5 89.07:110.96 89.07:110.96 Nickel TM152 97.33 89.24:114.18 94.67 93.20:115.55			92.62 : 115.02
Cadmium TM152 101.5 93.85:111.65 93.85:111.65 Calcium TM152 94.0 89.20:126.91 TM152 101.0 92.22:109.85 100.33 85.01:114.87 Cobalt TM152 100.33 85.01:114.87 100.0 89.87:119.73 Iron TM152 103.33 93.02:113.86 Lead TM152 102.17 91.11:116.98 Lithium TM152 106.67 91.30:123.00 Magnesium TM152 98.0 89.60:116.61 Manganese TM152 106.0 93.97:112.46 Molybdenum TM152 98.5 89.07:110.96 Nickel TM152 102.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 94.67 93.20:115.55	Boron	TM152	109.67
Calcium			
93.85 : 111.65 Calcium TM152 94.0 89.20 : 126.91 Chromium TM152 101.0 92.22 : 109.85 Cobalt TM152 100.33 85.01 : 114.87 Copper TM152 101.0 89.87 : 119.73 Iron TM152 103.33 93.02 : 113.86 Lead TM152 102.17 91.11 : 116.98 Lithium TM152 106.67 91.30 : 123.00 Magnesium TM152 98.0 89.60 : 116.61 Manganese TM152 98.5 89.07 : 112.46 Molybdenum TM152 98.5 89.07 : 110.96 Nickel TM152 102.83 93.70 : 112.15 Phosphorus TM152 97.33 89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55	Cadmium	TM152	101 5
Sq. 10 Sq. 20 : 126.91 Chromium			
Residue Resi	Calcium	TM152	94.0
Chromium TM152 101.0 92.22: 109.85 Cobalt TM152 100.33 85.01: 114.87 Copper TM152 101.0 89.87: 119.73 Iron TM152 103.33 93.02: 113.86 Lead TM152 102.17 91.11: 116.98 Lithium TM152 106.67 91.30: 123.00 Magnesium TM152 98.0 89.60: 116.61 Manganese TM152 98.5 89.60: 116.61 Molybdenum TM152 98.5 89.07: 110.96 Nickel TM152 102.83 93.70: 112.15 Phosphorus TM152 97.33 89.24: 114.18 Potassium TM152 94.67 93.20: 115.55			V
Potassium Pota	Chromium	TM152	
Cobalt TM152 100.33 85.01: 114.87 Copper TM152 101.0 89.87: 119.73 Iron TM152 103.33 93.02: 113.86 Lead TM152 102.17 91.11: 116.98 Lithium TM152 106.67 91.30: 123.00 Magnesium TM152 98.0 89.60: 116.61 Manganese TM152 106.0 93.97: 112.46 Molybdenum TM152 98.5 89.07: 110.96 Nickel TM152 102.83 93.70: 112.15 Phosphorus TM152 97.33 89.24: 114.18 Potassium TM152 94.67 93.20: 115.55			
Copper	Cobalt	TM152	
Copper TM152 101.0 89.87:119.73 103.33 93.02:113.86 102.17 91.11:116.98 106.67 91.30:123.00 91.30:123.00 Magnesium TM152 98.0 89.60:116.61 89.60:116.61 Molybdenum TM152 98.5 89.07:112.46 89.07:110.96 Nickel TM152 102.83 93.70:112.15 97.33 89.24:114.18 Potassium TM152 94.67 93.20:115.55	o o o o o o o o o o o o o o o o o o o	92	
TM152	Copper	TM152	
Iron TM152 103.33 93.02: 113.86 102.17 91.11: 116.98 106.67 91.30: 123.00 98.0 Magnesium TM152 98.0 89.60: 116.61 93.97: 112.46 Molybdenum TM152 98.5 89.07: 110.96 Nickel TM152 102.83 93.70: 112.15 97.33 89.24: 114.18 Potassium TM152 94.67 93.20: 115.55	обрро.	92	
Lead	Iron	TM152	
Lead TM152 102.17 91.11: 116.98 106.67 91.30: 123.00 91.30: 123.00 Magnesium TM152 98.0 89.60: 116.61 89.60: 116.61 Molybdenum TM152 98.5 89.07: 112.46 89.5 89.07: 110.96 102.83 93.70: 112.15 97.33 89.24: 114.18 94.67 93.20: 115.55	iioii	1101102	
TM152 106.67 91.30 : 123.00	Load	TM152	
Lithium TM152 106.67 91.30: 123.00 98.0 Magnesium TM152 98.0 89.60: 116.61 106.0 93.97: 112.46 98.5 Molybdenum TM152 98.5 Nickel TM152 102.83 93.70: 112.15 97.33 89.24: 114.18 Potassium TM152 94.67 93.20: 115.55	Leau	TIVITOL	
Magnesium	Lithium	TM152	
Magnesium TM152 98.0 89.60 : 116.61 Manganese TM152 106.0 93.97 : 112.46 Molybdenum TM152 98.5 89.07 : 110.96 Nickel TM152 102.83 93.70 : 112.15 Phosphorus TM152 97.33 89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55	Liuliulii	1101132	
Manganese TM152 106.0 93.97:112.46 93.97:112.46 Molybdenum TM152 98.5 89.07:110.96 89.07:110.96 Nickel TM152 102.83 93.70:112.15 97.33 89.24:114.18 94.67 93.20:115.55		T14450	
Manganese TM152 106.0 93.97: 112.46 98.5 89.07: 110.96 89.07: 110.96 Nickel TM152 102.83 93.70: 112.15 97.33 89.24: 114.18 Potassium TM152 94.67 93.20: 115.55	iviagnesium	TM152	00.0
Molybdenum	.,	Thurs	
Molybdenum TM152 98.5 Nickel TM152 102.83 93.70 : 112.15 97.33 89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55 93.20 : 115.55	Manganese	TM152	
Nickel TM152 102.83 93.70 : 112.15 Phosphorus TM152 97.33 89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55			93.97 : 112.46
Nickel TM152 102.83 93.70:112.15 Phosphorus TM152 97.33 89.24:114.18 Potassium TM152 94.67 93.20:115.55	Molybdenum	TM152	
Phosphorus TM152 93.70 : 112.15 Phosphorus TM152 97.33 89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55			89.07 : 110.96
Phosphorus TM152 97.33 89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55	Nickel	TM152	
89.24 : 114.18 Potassium TM152 94.67 93.20 : 115.55			93.70 : 112.15
Potassium TM152 94.67 93.20 : 115.55	Phosphorus	TM152	
93.20 : 115.55			89.24 : 114.18
	Potassium	TM152	94.67
Selenium 1M152 101.17	Selenium	TM152	101.17
91.69 : 117.12			

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Dissolved Metals by ICP-MS

		QC 2221
Silver	TM152	109.33 90.93 : 121.73
Sodium	TM152	98.0 92.42 : 113.24
Strontium	TM152	98.67 92.14 : 116.24
Tellurium	TM152	95.67 89.88 : 111.78
Thallium	TM152	92.83 82.43 : 113.83
Tin	TM152	100.0 94.62 : 107.79
Titanium	TM152	106.0 90.29 : 115.23
Tungsten	TM152	99.67 77.61 : 132.31
Uranium	TM152	101.0 86.97 : 115.76
Vanadium	TM152	100.33 89.61 : 115.48
Zinc	TM152	103.33 87.51 : 116.26

Dissolved Organic/Inorganic Carbon

Component	Method Code	QC 2269
Dissolved Inorganic Carbon	TM090	106.0 91.27 : 109.87
Dissolved Organic Carbon	TM090	100.67 97.87 : 108.77

EPH CWG GC (S)

Component	Method Code	QC 2204
EPH >C8-C40 Raw	TM414	73.31 58.30 : 125.82
Total Aliphatics Raw	TM414	75.14 62.99 : 136.42
Total Aromatics Raw	TM414	102.19 58.66 : 146.54

GRO by GC-FID (S)

	Component	Method Code	QC 2290
I	QC	TM089	83.78 70.34 : 111.95

GRO by GC-FID (W)

CERTIFICATE OF ANALYSIS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

GRO by GC-FID (W)

Component	Method Code	QC 2290
Benzene by GC	TM245	97.5 79.13 : 118.84
Ethylbenzene by GC	TM245	102.0 79.54 : 115.99
m & p Xylene by GC	TM245	101.5 78.44 : 116.32
MTBE GC-FID	TM245	94.0 81.43 : 120.09
o Xylene by GC	TM245	101.0 76.85 : 120.29
QC	TM245	103.43 71.58 : 131.01
Toluene by GC	TM245	100.5 79.00 : 121.96

Hexavalent Chromium (s)

Component	Method Code	QC 2223	QC 2206
Hexavalent Chromium	TM151	100.0 95.60 : 107.60	100.0 95.60 : 107.60

Mercury Dissolved

Component	Method Code	QC 2272	QC 2289
Mercury Dissolved (CVAF)	TM183	98.0	79.8
		75.00 : 111.00	76.80 : 117.12

Metals in solid samples by OES

Component	Method Code	QC 2232
Aluminium	TM181	109.73 73.56 : 108.85
Antimony	TM181	102.85 76.89 : 111.24
Arsenic	TM181	110.47 88.53 : 111.01
Barium	TM181	106.42 77.67 : 105.35
Beryllium	TM181	108.58 85.44 : 109.61
Boron	TM181	94.84 73.51 : 104.66
Cadmium	TM181	92.18 77.67 : 104.12
Chromium	TM181	103.85 82.26 : 104.55
Cobalt	TM181	100.31 84.60 : 104.13

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number:

A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Metals in solid samples by OES

		QC 2232
Copper	TM181	102.11
		82.40 : 105.45
Iron	TM181	108.73
		82.95 : 110.58
Lead	TM181	104.05
		78.24 : 104.05
Manganese	TM181	120.56
		94.29 : 119.51
Mercury	TM181	102.17
·		83.16 : 107.81
Molybdenum	TM181	106.17
,		87.11 : 106.87
Nickel	TM181	
THOROI	1111101	101.96 80.26 : 102.28
Phosphorus	TM181	
Filospilorus	TIWITOT	115.15
0.1.1	T14404	94.56 : 124.28
Selenium	TM181	108.63
		82.28 : 110.48
Strontium	TM181	98.89
		79.13 : 102.79
Thallium	TM181	109.73
		82.94 : 111.86
Tin	TM181	109.51
		86.72 : 110.03
Titanium	TM181	70.38
		66.23 : 102.06
Vanadium	TM181	102.56
		86.19 : 109.45
Zinc	TM181	108.42
		84.68 : 113.99

PAH by GCMS

Component	Method Code	QC 2201
Acenaphthene	TM218	95.5 80.97 : 105.99
Acenaphthylene	TM218	94.0 80.24 : 105.29
Anthracene	TM218	95.0 73.72 : 109.23
Benz(a)anthracene	TM218	101.0 79.72 : 116.84
Benzo(a)pyrene	TM218	97.0 68.42 : 118.29
Benzo(b)fluoranthene	TM218	87.5 77.35 : 112.97
Benzo(ghi)perylene	TM218	93.0 77.68 : 107.38
Benzo(k)fluoranthene	TM218	101.0 82.61 : 111.93
Chrysene	TM218	95.0 80.28 : 111.42
Dibenzo(ah)anthracene	TM218	94.0 79.17 : 106.41

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

PAH by GCMS

		QC 2201
Fluoranthene	TM218	99.5 79.07 : 112.75
Fluorene	TM218	95.0 80.52 : 110.90
Indeno(123cd)pyrene	TM218	97.0 76.97 : 113.36
Naphthalene	TM218	88.0 78.94 : 110.91
Phenanthrene	TM218	96.5 79.34 : 111.91
Pyrene	TM218	98.5 74.43 : 114.36

PAH in waters by GC-MS (diss.filt)

Component	Method Code	QC 2268
Acenaphthene (diss.filt)	TM178	108.4 94.40 : 118.40
Acenaphthylene (diss.filt)	TM178	101.2 92.00 : 116.00
Anthracene (diss.filt)	TM178	100.4 88.80 : 115.20
Benzo(a)anthracene (diss.filt)	TM178	101.2 85.20 : 118.80
Benzo(a)pyrene (diss.filt)	TM178	102.4 90.40 : 119.20
Benzo(b)fluoranthene (diss.filt)	TM178	107.6 86.40 : 122.40
Benzo(g,h,i)perylene (diss.filt)	TM178	100.8 92.00 : 116.00
Benzo(k)fluoranthene (diss.filt)	TM178	106.4 92.00 : 125.60
Chrysene (diss.filt)	TM178	104.0 95.20 : 121.60
Dibenzo(a,h)anthracene (diss.filt)	TM178	104.8 88.80 : 112.80
Fluoranthene (diss.filt)	TM178	103.6 87.60 : 118.80
Fluorene (diss.filt)	TM178	103.2 93.60 : 117.60
Indeno(1,2,3-cd)pyrene (diss.filt)	TM178	107.6 85.60 : 114.40
Naphthalene (diss.filt)	TM178	102.4 87.20 : 123.20
Phenanthrene (diss.filt)	TM178	101.6 94.00 : 118.00
Pyrene (diss.filt)	TM178	102.8 87.20 : 120.80

рΗ

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Ha

Component	Method Code	QC 2209
рН	TM133	101.19 98.47 : 102.33

pH Value of Filtered Water

Component	Method Code	QC 2276
рН	TM256	102.16 100.13 : 103.37

Phenols by HPLC (S)

Component	Method Code	QC 2205	QC 2281
2.3.5 Trimethyl-Phenol by HPLC (S)	TM062 (S)	103.9 65.50 : 89.50	111.69 65.50 : 89.50
2-Isopropyl Phenol by HPLC (S)	TM062 (S)	91.81 84.00 : 124.00	92.98 84.00 : 124.00
Catechol by HPLC (S)	TM062 (S)	93.33 19.39 : 135.70	95.24 19.39 : 135.70
Cresols by HPLC (S)	TM062 (S)	97.49 81.00 : 112.20	101.25 81.00 : 112.20
Napthol by HPLC (S)	TM062 (S)	118.57 57.50 : 102.50	128.57 57.50 : 102.50
Phenol by HPLC (S)	TM062 (S)	105.3 88.67 : 124.67	109.93 88.67 : 124.67
Resorcinol HPLC (S)	TM062 (S)	94.97 69.99 : 127.22	101.26 69.99 : 127.22
Xylenols by HPLC (S)	TM062 (S)	99.58 90.22 : 114.22	106.25 95.22 : 115.89

Phenols by HPLC (W)

Component	Method Code	QC 2268	QC 2255
		QO 2200	QO 2200
2.3.5 Trimethyl-Phenol by	TM259	95.0	97.0
HPLC (W)		78.51 : 104.18	91.00 : 109.00
		70.31 . 104.10	91.00 . 109.00
2-Isopropyl Phenol by HPLC	TM259	96.0	92.0
(W)			1
` '		84.55 : 110.90	85.00 : 109.00
Cresols by HPLC (W)	TM259	91.0	99.0
		* ****	00.0
		90.00 : 112.00	93.00 : 115.00
Napthol by HPLC (W)	TM259	106.0	103.0
		82.00 : 124.00	86.00 : 128.00
Phenol by HPLC (W)	TM259	96.0	99.0
		86.80 : 112.60	88.24 : 111.76
		00.00 : 112.00	00.24 : 111.70
Xylenols by HPLC (W)	TM259	99.33	98.83
		94.74 : 115.71	93.33 : 107.33
		57.17.115.71	30.00 . 107.00

Total Organic Carbon

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

Total Organic Carbon

Component	Method Code	QC 2270
Total Organic Carbon	TM132	99.61 84.82 : 117.61

VOC MS (S)

Component	Method Code	QC 2212	QC 2269
1,1,1,2-tetrachloroethane	TM116	102.6 84.84 : 116.25	103.6 84.84 : 116.25
1,1,1-Trichloroethane	TM116	91.2 73.73 : 118.05	95.6 73.73 : 118.05
1,1,2-Trichloroethane	TM116	99.0 77.12 : 116.04	110.2 77.12 : 116.04
1,1-Dichloroethane	TM116	97.0 74.46 : 129.15	100.2 74.46 : 129.15
1,2-Dichloroethane	TM116	113.8 92.38 : 131.65	121.8 92.38 : 131.65
1,4-Dichlorobenzene	TM116	96.2 83.64 : 126.18	100.0 83.64 : 126.18
2-Chlorotoluene	TM116	89.0 75.26 : 110.11	91.4 75.26 : 110.11
4-Chlorotoluene	TM116	85.8 66.90 : 112.46	87.4 66.90 : 112.46
Benzene	TM116	99.4 88.60 : 113.80	102.8 88.60 : 113.80
Carbon Disulphide	TM116	93.0 74.91 : 122.14	93.6 74.91 : 122.14
Carbontetrachloride	TM116	103.2 80.31 : 124.50	103.8 80.31 : 124.50
Chlorobenzene	TM116	102.6 83.81 : 114.18	104.2 83.81 : 114.18
Chloroform	TM116	102.0 87.40 : 122.49	106.2 87.40 : 122.49
Chloromethane	TM116	100.2 65.05 : 142.63	94.0 65.05 : 142.63
Cis-1,2-Dichloroethene	TM116	95.4 80.67 : 126.72	100.8 80.67 : 126.72
Dibromomethane	TM116	99.4 76.06 : 125.74	110.0 76.06 : 125.74
Dichloromethane	TM116	106.4 81.11 : 133.25	115.4 81.11 : 133.25
Ethylbenzene	TM116	92.4 75.92 : 110.41	92.8 75.92 : 110.41
Hexachlorobutadiene	TM116	71.6 12.82 : 152.73	67.4 12.82 : 152.73
Isopropylbenzene	TM116	70.8 54.21 : 117.17	72.4 54.21 : 117.17
Naphthalene	TM116	113.4 80.86 : 128.81	113.8 80.86 : 128.81
o-Xylene	TM116	84.8 69.99 : 108.74	87.0 69.99 : 108.74

CERTIFICATE OF ANALYSIS

ALS

SDG: 200610-85 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/345 Report Number: Superseded Report: 556416

VOC MS (S)

		QC 2212	QC 2269
p/m-Xylene	TM116	89.0 68.32 : 108.91	90.3 68.32 : 108.91
Sec-Butylbenzene	TM116	58.4 44.91 : 118.40	58.6 44.91 : 118.40
Tetrachloroethene	TM116	104.2 76.95 : 121.02	102.0 76.95 : 121.02
Toluene	TM116	93.2 74.24 : 107.42	97.4 74.24 : 107.42
Trichloroethene	TM116	97.8 77.61 : 111.54	101.4 77.61 : 111.54
Trichlorofluoromethane	TM116	107.2 84.55 : 133.27	103.0 84.55 : 133.27
Vinyl Chloride	TM116	101.0 70.29 : 138.58	97.0 70.29 : 138.58

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

 SDG:
 200610-85
 Client Reference:
 A110489-6-1
 Report Number:
 556416

 Location:
 Trinity Fields
 Order Number:
 C20/345
 Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow nAsbests
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017)

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

> Tel: (01244) 528700 Fax: (01244) 528701

email: haward encustomers ervices@alsglobal.com

Website: www.alsenvironmental.co.uk

WYG Geo-Environment 5th Floor Longcross Court 47 Newport Road Cardiff CF24 0AD

Attention: Sophie Brookes

CERTIFICATE OF ANALYSIS

Date of report Generation: 02 July 2020

Customer: WYG Geo-Environment

Sample Delivery Group (SDG):200625-47Your Reference:A110489-6-1Location:Trinity FieldsReport No:557549

We received 2 samples on Thursday June 25, 2020 and 2 of these samples were scheduled for analysis which was completed on Thursday July 02, 2020. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

 SDG:
 200625-47
 Client Reference:
 A110489-6-1
 Report Number:
 557549

 Location:
 Trinity Fields
 Order Number:
 C20/377
 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
22370917	BH3	ES1	0.00 - 0.00	23/06/2020
22370928	BH4	ES2	0.00 - 0.00	23/06/2020

20.2

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

inina

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

557549

CERTIFICATE OF ANALYSIS

ALS

SDG: 200625-47 Client Reference: A110489-6-1 Report Number: Trinity Fields C20/377 Superseded Report: Location: Order Number: Results Legend 22370917 22370928 Lab Sample No(s) X Test No Determination Possible Customer BH4 BH3 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ES1 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate 0.00-PR - Process Water 0.00 - 0.00 SA - Saline Water Depth (m) TE - Trade Effluent - 0.00 TS - Treated Sewage US - Untreated Sewage (ALE208)
250ml Amber Gl.
PTFE/PE (ALE219)
1000ml glass bottle
(ALE220) 1000ml glass bottle (ALE220) Vial (ALE297) RE - Recreational Water 250ml Amber Gl. PTFE/PE (ALE219) H2SO4 (ALE244) H2SO4 (ALE244) NaOH (ALE245) 500ml Plastic (ALE208) NaOH (ALE245) DW - Drinking Water Non-regulatory ۷ial 500ml Plastic UNL - Unspecified Liquid (ALE297) SL - Sludge Container G - Gas OTH - Other GW GW Sample Type GW Alkalinity as CaCO3 All NDPs: 0 Tests: 2 Χ Χ Ammoniacal Nitrogen All NDPs: 0 Tests: 2 Χ Χ Anions by Kone (w) All NDPs: 0 Tests: 2 X X Cyanide Comp/Free/Total/Thiocyanate All NDPs: 0 Tests: 2 X Х Dissolved Metals by ICP-MS All NDPs: 0 Tests: 2 Х Х Dissolved Organic/Inorganic Carbon All NDPs: 0 Tests: 2 Х X EPH CWG (Aliphatic) Aqueous GC (W) All NDPs: 0 Tests: 2 Χ Х EPH CWG (Aromatic) Aqueous GC (W) All NDPs: 0 Tests: 2 Χ Χ GRO by GC-FID (W) All NDPs: 0 Tests: 2 X Mercury Dissolved All NDPs: 0 Tests: 2 Χ X Nitrite by Kone (w) All NDPs: 0 Tests: 2 X Х PAH Spec MS - Aqueous (W) All NDPs: 0 Tests: 2 X X pH Value All NDPs: 0 Tests: 2 Х Х Phenols by HPLC (W) All NDPs: 0 Tests: 2 X Х TPH CWG (W) All NDPs: 0 Tests: 2 X X

ALS

SDG: 200625-47 Location: Trinity Fields

Client Reference: Order Number: A110489-6-1 C20/377 Report Number: Superseded Report: 557549

Results Legend # ISO17025 accredited.	C	Customer Sample Ref.	BH3	BH4		
M mCERTS accredited. aq Aqueous / settled sample.		Donath (m)				
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Ground Water (GW)	0.00 - 0.00 Ground Water (GW)		
 Subcontracted - refer to subcontractor report accreditation status. 		Date Sampled Sample Time	23/06/2020	23/06/2020		
** % recovery of the surrogate standard to chec efficiency of the method. The results of indivi	dual	Date Received	25/06/2020	25/06/2020		
compounds within samples aren't corrected f	or the	SDG Ref	200625-47 22370917	200625-47 22370928		
(F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	ES1	ES2		
Component	LOD/Units	Method	007	240		
Alkalinity, Total as CaCO3	<2 mg/l	TM043	237	340 # #		
Carbon, Organic (diss.filt)	<3 mg/l	TM090	<3	3.21		
Ammoniacal Nitrogen as NH3	<0.2 mg/l	TM099	<0.2	<0.2		
Ammoniacal Nitrogen as NH4	<0.3 mg/l	TM099	<0.3	<0.3		
Antimony (diss.filt)	<1 µg/l	TM152	<1	<1		
Arsenic (diss.filt)	<0.5 µg/l	TM152	<0.5	0.546		
Barium (diss.filt)	<0.2 µg/l	TM152	76.6	40.8		
Beryllium (diss.filt)	<0.1 μg/l	TM152	2‡ <0.1	¢ 2 #		
			2‡	# 2#		
Boron (diss.filt)	<10 µg/l	TM152	18.9 2‡			
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08 2‡	<0.08 # 2#		
Chromium (diss.filt)	<1 µg/l	TM152	<1 2‡	4.47 ‡ 2#		
Copper (diss.filt)	<0.3 µg/l	TM152	0.885 2‡	4.8 # 2#		
Lead (diss.filt)	<0.2 µg/l	TM152	<0.2 2‡	<0.2 # 2#		
Molybdenum (diss.filt)	<3 µg/l	TM152	<3 2‡	<3		
Nickel (diss.filt)	<0.4 µg/l	TM152	<0.4	0.442		
Selenium (diss.filt)	<1 µg/l	TM152	3.14	21.4		
Zinc (diss.filt)	<1 µg/l	TM152	<1 2#	1.47		
Mercury (diss.filt)	<0.01 µg/l	TM183	<0.01 2‡	<0.01		
Nitrite as NO2	<0.05 mg/l	TM184	<0.05	0.162		
Sulphate	<2 mg/l	TM184	17.5	61.6		
Chloride	<2 mg/l	TM184	13.4	11.7		
Nitrate as NO3	<0.3 mg/l	TM184	6.12	1.28		
Cyanide, Total	<0.05 mg/l	TM227	<0.05	<0.05		
рН	<1 pH Units	TM256	7.59	8.08		
Phenol	<0.002 mg/l	TM259	<0.002	<0.002		
			#	#		

ALS

SDG:200625-47Client Reference:A110489-6-1Report Number:557549Location:Trinity FieldsOrder Number:C20/377Superseded Report:

PAH Spec MS - Aqueous Results Legend	s (W)					
Results Legend # ISO17025 accredited.		Customer Sample Ref.	BH3	BH4		
M mCERTS accredited.						
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00		
tot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)	Ground Water (GW)		
 Subcontracted - refer to subcontractor report accreditation status. 	tor	Date Sampled	23/06/2020	23/06/2020		
** % recovery of the surrogate standard to check	k the	Sample Time				
efficiency of the method. The results of individual compounds within samples aren't corrected for		Date Received	25/06/2020 200625-47	25/06/2020 200625-47		
recovery		SDG Ref	22370917	22370928		
(F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	ES1	ES2		
Component	LOD/Units	Method				
Naphthalene (aq)	<0.01 µg/l		0.0122	0.0308		
Napritrialerie (aq)	<0.01 μg/i	1101170		1		
			#	#		
Acenaphthene (aq)	<0.005 µg/l	TM178	<0.005	<0.01		
			#	#		
Acenaphthylene (aq)	<0.005 µg/l	TM178	<0.005	<0.01		
/ toonapharyiono (aq)	-0.000 руп	1111110	#	#		
				+		
Fluoranthene (aq)	<0.005 µg/l	TM178	0.0124	0.0469		
			#	#		
Anthracene (aq)	<0.005 µg/l	TM178	< 0.005	<0.01		
\ "	"		#	#		
Dhanashana (an)	40.005	TM178				
Phenanthrene (aq)	<0.005 µg/l	1101170	0.0341	0.0957		
			#	#		
Fluorene (aq)	<0.005 µg/l	TM178	0.00657	0.0182		
I and the second	1	1	#	#		
Chrysene (ag)	<0.005	TM178	0.0102	0.0315		
Chrysene (aq)	<0.005 µg/l	11011/0		I		
			#	#		
Pyrene (aq)	<0.005 µg/l	TM178	0.0205	0.0525		
1		1	#	#		
Benzo(a)anthracene (aq)	<0.005 µg/l	TM178	<0.005	0.0162		
Benzo(a)antinacene (aq)	-0.000 μg/ι	1101170		I		
			#	#		
Benzo(b)fluoranthene (aq)	<0.005 µg/l	TM178	0.00997	0.0354		
			#	#		
Benzo(k)fluoranthene (aq)	<0.005 µg/l	TM178	<0.005	0.015		
(/,			#	#		
D ()	0.000 #	T14470		+		
Benzo(a)pyrene (aq)	<0.002 µg/l	TM178	0.00485	0.023		
			#	#		
Dibenzo(a,h)anthracene (aq)	<0.005 µg/l	TM178	< 0.005	<0.01		
	"		#	#		
Danza(a h i\namidana (as)	<0.00E//	TM470				
Benzo(g,h,i)perylene (aq)	<0.005 µg/l	TM178	<0.005	<0.01		
			#	#		
Indeno(1,2,3-cd)pyrene (aq)	<0.005 µg/l	TM178	<0.005	0.0154		
			#	#		
PAH, Total Detected USEPA 16	<0.082 µg/l	TM178	0.111	0.381		
(aq)	0.002 pg/.		#	#		
(44)		_	π	π		
		1 1				
		1 1				
		1 1				
		 				
		1 1				
		+				
I		1				
I	I	1				
		+ +				
I		1				
		+				
I		1				
	<u></u> _					
	l	1				
		+				
I						
1						
I		1				
	-	+				
1						
1						
		+				
I		1				
I		1				
		1				
1						

ALS

SDG:200625-47Client Reference:A110489-6-1Report Number:557549Location:Trinity FieldsOrder Number:C20/377Superseded Report:

TPH CWG (W)							
Results Legend # IS017025 accredited.		Customer Sample Ref.	BH3	BH4			
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00			
* Subcontracted - refer to subcontractor report	for	Sample Type Date Sampled	Ground Water (GW) 23/06/2020	Ground Water (GW) 23/06/2020			
accreditation status. ** % recovery of the surrogate standard to check	the	Sample Time					
efficiency of the method. The results of individ compounds within samples aren't corrected for		Date Received	25/06/2020 200625-47	25/06/2020 200625-47			
recovery (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	22370917	22370928			
1-3+§@ Sample deviation (see appendix)		AGS Reference	ES1	ES2			
Component	LOD/Un						
GRO Surrogate % recovery**	%	TM245	116	109			
GRO >C5-C12	<50 µg	g/l TM245	<50 #	<50	#		
Methyl tertiary butyl ether (MTBE)	<3 µg	/I TM245	<3 #	<3	#		
Benzene	<7 µg	/I TM245	<7 #	<7	#		
Toluene	<4 µg	/I TM245	<4 #	<4	#		
Ethylbenzene	<5 µg	/I TM245	<5 #	<5	#		
m,p-Xylene	<8 µg	/I TM245	<8 #	<8	#		
o-Xylene	<3 µg	/I TM245	<3 #	<3	#		
Sum of detected Xylenes	<11 µg	g/l TM245	<11	<11			
Sum of detected BTEX	<28 µg	g/l TM245	<28	<28			
Aliphatics >C5-C6	<10 µg	g/l TM245	<10	<10			
Aliphatics >C6-C8	<10 μς	g/l TM245	<10	<10			
Aliphatics >C8-C10	<10 μο	g/l TM245	<10	<10			
Aliphatics >C10-C12	<10 µg	g/l TM245	<10	<10			
Aliphatics >C12-C16 (aq)	<10 μς	g/l TM174	<10	<20			
Aliphatics >C16-C21 (aq)	<10 μς	g/l TM174	<10	<20			
Aliphatics >C21-C35 (aq)	<10 μς	g/l TM174	<10	<20			
Total Aliphatics >C12-C35 (aq)	<10 μς	g/l TM174	<10	<20			
Aromatics >EC5-EC7	<10 μς	g/l TM245	<10	<10			
Aromatics >EC7-EC8	<10 μς	g/l TM245	<10	<10			
Aromatics >EC8-EC10	<10 μς	g/l TM245	<10	<10			
Aromatics >EC10-EC12	<10 μς	g/l TM245	<10	<10			
Aromatics >EC12-EC16 (aq)	<10 μς	g/l TM174	<10	<20			
Aromatics >EC16-EC21 (aq)	<10 μς		<10	<20			
Aromatics >EC21-EC35 (aq)	<10 μς	g/l TM174	<10	<20			
Total Aromatics >EC12-EC35 (aq)	<10 μς	g/l TM174	<10	<20			
Total Aliphatics & Aromatics >C5-35 (aq)	<10 μς	g/l TM174	<10	<20			
Aliphatics >C16-C35 Aqueous	<10 μς	g/l TM174	<10	<20			

CERTIFICATE OF ANALYSIS

SDG:200625-47Client Reference:A110489-6-1Report Number:557549Location:Trinity FieldsOrder Number:C20/377Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

CERTIFICATE OF ANALYSIS

ALS

SDG: 200625-47 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/377 Report Number: Superseded Report: 557549

Test Completion Dates

Lab Sample No(s)	22370917	22370928
Customer Sample Ref.	BH3	BH4
AGS Ref.	ES1	ES2
Depth	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Ground Water
Alkalinity as CaCO3	02-Jul-2020	02-Jul-2020
Ammoniacal Nitrogen	27-Jun-2020	27-Jun-2020
Anions by Kone (w)	30-Jun-2020	30-Jun-2020
Cyanide Comp/Free/Total/Thiocyanate	01-Jul-2020	01-Jul-2020
Dissolved Metals by ICP-MS	02-Jul-2020	02-Jul-2020
Dissolved Organic/Inorganic Carbon	02-Jul-2020	02-Jul-2020
EPH CWG (Aliphatic) Aqueous GC (W)	02-Jul-2020	02-Jul-2020
EPH CWG (Aromatic) Aqueous GC (W)	02-Jul-2020	02-Jul-2020
GRO by GC-FID (W)	30-Jun-2020	30-Jun-2020
Mercury Dissolved	30-Jun-2020	30-Jun-2020
Nitrite by Kone (w)	29-Jun-2020	29-Jun-2020
PAH Spec MS - Aqueous (W)	02-Jul-2020	02-Jul-2020
pH Value	30-Jun-2020	30-Jun-2020
Phenols by HPLC (W)	30-Jun-2020	30-Jun-2020
TPH CWG (W)	02-Jul-2020	02-Jul-2020

Validated

SDG: 200625-47 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/377 Report Number: Superseded Report: 557549

ASSOCIATED AQC DATA

Alkalinity as CaCO3

_	Component	Method Code	QC 2203
	Total Alkalinity as CaCO3	TM043	98.48 94.47 : 104.41

Ammoniacal Nitrogen

Component	Method Code	QC 2243	QC 2258
Ammoniacal Nitrogen as N	TM099	100.4 93.14 : 108.60	101.2 93.14 : 108.60

Anions by Kone (w)

Component	Method Code	QC 2255
Chloride	TM184	106.0
		92.93 : 115.43
Sulphate (soluble)	TM184	103.2
		90.53 : 113.03
TON as NO3	TM184	106.0
		94.00 : 111.10

Cyanide Comp/Free/Total/Thiocyanate

Component	Method Code	QC 2246
Free Cyanide (W)	TM227	98.25
		90.50 : 114.50
Thiocyanate (W)	TM227	99.5
		90.50 : 113.00
Total Cyanide (W)	TM227	97.5
		91.75 : 112.75

Dissolved Metals by ICP-MS

Component	Method Code	QC 2293
Aluminium	TM152	107.0 94.21 : 111.52
Antimony	TM152	106.33 88.37 : 130.57
Arsenic	TM152	105.5 92.62 : 113.52
Barium	TM152	104.5 88.62 : 113.14
Beryllium	TM152	104.83 89.98 : 116.88
Bismuth	TM152	103.5 92.62 : 115.02
Boron	TM152	109.67 86.31 : 120.88

ALS

SDG: 200625-47 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/377 Report Number: Superseded Report:

557549

Dissolved Metals by ICP-MS

		QC 2293
Cadmium	TM152	106.33 93.85 : 111.65
Calcium	TM152	103.33 89.20 : 126.91
Chromium	TM152	106.5 92.22 : 109.85
Cobalt	TM152	106.33 85.01 : 114.87
Copper	TM152	106.33 89.87 : 119.73
Iron	TM152	106.67 93.02 : 113.86
Lead	TM152	104.5 91.11 : 116.98
Lithium	TM152	102.5 91.30 : 123.00
Magnesium	TM152	100.67 89.60 : 116.61
Manganese	TM152	108.5 93.97 : 112.46
Molybdenum	TM152	105.67 89.07 : 110.96
Nickel	TM152	107.83 93.70 : 112.15
Phosphorus	TM152	101.5 89.24 : 114.18
Potassium	TM152	103.33 93.20 : 115.55
Selenium	TM152	111.0 91.69:117.12
Silver	TM152	117.67 90.93 : 121.73
Sodium	TM152	101.33 92.42 : 113.24
Strontium	TM152	104.0 92.14 : 116.24
Tellurium	TM152	102.0 89.88 : 111.78
Thallium	TM152	83.5 82.43 : 113.83
Tin	TM152	105.5 94.62 : 107.79
Titanium	TM152	110.17 90.29 : 115.23
Tungsten	TM152	103.5 77.61 : 132.31
Uranium	TM152	102.83 86.97 : 115.76
Vanadium	TM152	109.33 89.61 : 115.48
Zinc	TM152	109.33 87.51 : 116.26

Dissolved Organic/Inorganic Carbon

CERTIFICATE OF ANALYSIS

SDG: 200625-47 Location: Trinity Fields

Client Reference: Order Number:

A110489-6-1 C20/377

Report Number: Superseded Report: 557549

Dissolved Organic/Inorganic Carbon

Component	Method Code	QC 2223
Dissolved Inorganic Carbon	TM090	99.0 91.27 : 109.87
Dissolved Organic Carbon	TM090	101.5 96.58 : 107.98

EPH CWG (Aliphatic) Aqueous GC (W)

Component	Method Code	QC 2278
Total Aliphatics >C10-C40	TM174	117.0
		68.59 : 134.82

EPH CWG (Aromatic) Aqueous GC (W)

Component	Method Code	QC 2287
Total Aromatics >EC10-EC40	TM174	86.83
		60.75 : 129.09

GRO by GC-FID (W)

Component	Method Code	QC 2218
Benzene by GC	TM245	102.5 81.54 : 119.70
Ethylbenzene by GC	TM245	108.0 80.99 : 121.09
m & p Xylene by GC	TM245	106.0 82.77 : 123.19
MTBE GC-FID	TM245	106.5 80.06 : 123.27
o Xylene by GC	TM245	106.5 84.26 : 121.50
QC	TM245	100.0 76.13 : 145.89
Toluene by GC	TM245	105.5 82.78 : 121.99

Mercury Dissolved

Component	Method Code	QC 2239
Mercury Dissolved (CVAF)	TM183	97.4 76.80 : 117.12

PAH Spec MS - Aqueous (W)

SDG: 200625-47 Location: Trinity Fields Client Reference: Order Number: A110489-6-1 C20/377 Report Number: Superseded Report: 557549

PAH Spec MS - Aqueous (W)

Component	Method Code	00.0005
· .		QC 2295
Acenaphthene by GCMS	TM178	110.0
		100.00 : 119.20
Acenaphthylene by GCMS	TM178	108.8
		95.20 : 119.20
Anthracene by GCMS	TM178	107.2
		91.60 : 113.20
Benz(a)anthracene by GCMS	TM178	106.4
		90.40 : 119.20
Benzo(a)pyrene by GCMS	TM178	108.8
		92.80 : 119.20
Benzo(b)fluoranthene by	TM178	112.4
GCMS		89.60 : 120.80
Benzo(ghi)perylene by GCMS	TM178	104.8
		93.20 : 117.20
Benzo(k)fluoranthene by	TM178	111.2
GCMS		96.40 : 120.40
Chrysene by GCMS	TM178	109.6
		96.40 : 125.20
Dibenzo(ah)anthracene by	TM178	104.8
GCMS		92.00 : 113.60
Fluoranthene by GCMS	TM178	107.2
		91.20 : 117.60
Fluorene by GCMS	TM178	108.8
		95.60 : 122.00
Indeno(123cd)pyrene by	TM178	108.4
GCMS		90.40 : 112.00
Naphthalene by GCMS	TM178	108.4
		98.00 : 122.00
Phenanthrene by GCMS	TM178	106.8
		94.00 : 120.40
Pyrene by GCMS	TM178	106.8
		92.40 : 118.80

pH Value

	Component	Method Code	QC 2252
1	pН	TM256	101.89
			100.13 : 103.37

Phenols by HPLC (W)

Component	Method Code	QC 2298
2.3.5 Trimethyl-Phenol by HPLC (W)	TM259	100.0 91.00 : 109.00
2-Isopropyl Phenol by HPLC (W)	TM259	99.0 85.00 : 109.00
Cresols by HPLC (W)	TM259	102.33 93.00 : 115.00
Napthol by HPLC (W)	TM259	109.0 86.00 : 128.00
Phenol by HPLC (W)	TM259	104.0 88.24 : 111.76

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 200625-47
 Client Reference:
 A110489-6-1
 Report Number:
 557549

 Location:
 Trinity Fields
 Order Number:
 C20/377
 Superseded Report:

Phenols by HPLC (W)

	'	QC 2298
Xylenols by HPLC (W)	TM259	101.0 93.33 : 107.33

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

ALS

 SDG:
 200625-47
 Client Reference:
 A110489-6-1
 Report Number:
 557549

 Location:
 Trinity Fields
 Order Number:
 C20/377
 Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow nAsbests
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of $<3 \, \mu m$ diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017)

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Trinity Fields Ground Investigation Report

APPENDIX G – GROUNDWATER AND GROUND GAS MONITORING DATA

WYG Environmental Planning and Transport LANDGAS AND GROUNDWATER MONITORING RESULTS

5th Floor, Longcross Court, 47 Newport Road, Cardiff, CF24 0AD

Weather: Warm

EQUIPMENT USED Make Last Calibrated Type Serial G502044 Landtec GA5000 Mar-19 **Gas Analyser** 122-004988-1 **Interface Meter** Solinst N/A

	LANDGAS CONCENTRATIONS - INSTALLATION CONDITIONS										
Fundamental Peak Steady											
Exploratory Hole No	CH ₄	CO ₂	CH ₄	CO ₂	02	BAL	PID	H ₂ S	HCN	СО	Time
TIOIE NO	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	Time
BH03	0.1	1.1	0.1	1.1	18.1	80.7	nt	<1	nt	1	14:51:00
BH04	< 0.1	0.2	< 0.1	0.2	18.2	81.6	nt	<1	nt	3	15:08:00
WS01	<0.1	<0.1	< 0.1	<0.1	20.6	79.3	nt	<1	nt	<1	15:01:00
WS02	< 0.1	1.6	< 0.1	1.6	18.8	79.5	nt	<1	nt	1	15:20:00
WS10	0.1	1.6	0.1	1.6	18.5	79.8	nt	<1	nt	<1	14:40:00

				LANDGAS	- PHYSIC	CAL PARA	METERS
Exploratory	Atmos	Atmos	BH I	Flow	BH Pre	essure	
Hole No	Pressure	Temp (°C)	Peak	Steady	Peak	Steady	Remarks
TIOIE NO	(m bar)	Tellip (C)	(L/hr)	(L/hr)	(mbar)	(mbar)	
BH03	1005	nt	0.3	0.3	0.17	0.05	
BH04	1005	nt	0.2	0.2	0.12	0.07	
WS01	1005	nt	0.2	0.1	-0.02	0.00	
WS02	1003	nt	0.2	0.2	-0.10	-0.02	
WS10	1003	nt	0.3	0.3	-0.27	-0.15	

AMBIENT A	TMOSPHERIC COND	ITIONS	ATMOSPHERIC PRESSURE CONDITIONS				
Parameter	Before Monitoring	After Monitoring					
CH ₄ (% vol)	0.1	<0.1	3 days prior (m bar)	1013			
CO ₂ (% vol)	<0.1	<0.1	2 days prior (m bar)	1016			
O ₂ (% vol)	21.1	20.4	1 day prior (m bar)	1014			
PID (ppm)	nt	nt	during (m bar)	1013			
Atmos Press. (m bar)	1003	1003	1 day post (m bar)	1013			

	GROUNDWATER / NAPL - PHYSIO-CHEMICAL PARAMETERS													
Franka matama	Water	Base	LNAPL	DNAPL			Water Qua	ality Indicato	rs					
Exploratory Hole No	Surface	Depth	Surface	Surface	ORP	SPC	С	Ph	DO	Temp	Remarks			
Hole No	(mbgl)	(mbgl)	(mbgl)	(mbgl)	(mV)	(µs/cm)	(μs/cm)	(value)	(mg/L)	(°C)				
BH03	3.60	4.52	nd	nd	nt	nt	nt	nt	nt	nt	Silty base			
BH04	2.55	3.17	nd	nd	nt	nt	nt	nt	nt	nt				
WS01	DRY	1.96	nd	nd	nt	nt	nt	nt	nt	nt				
WS02	DRY	1.00	nd	nd	nt	nt	nt	nt	nt	nt				
WS10	DRY	0.77	nd	nd	nt	nt	nt	nt	nt	nt				

nt = not tested **Notes** nd = not detected Data Compiled by: SB Data Checked by: SR

WYG Environmental Planning and Transport LANDGAS AND GROUNDWATER MONITORING RESULTS

5th Floor, Longcross Court, 47 Newport Road, Cardiff, CF24 0AD

Weather: Clear

Site Name: Trinity Fields
Job No.: A110489-6-1
Client: CCBC

	EQUIPMENT USED										
Type	Make	Serial	Last Calibrated								
Gas Analyser	Gas Analyser Landtec GA5000 G502044 Mar-19										
Interface Meter	Solinst	122-004988-1	N/A								

	LANDGAS CONCENTRATIONS - INSTALLATION CONDITIONS													
Evploratory	Pe	ak		Steady										
Exploratory Hole No	CH₄	CO ₂	CH ₄	CO ₂	O ₂	BAL	PID	H ₂ S	HCN	CO	Time			
TIOIE NO	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	Time			
BH03	0.1	0.1	0.1	0.1	20.6	79.2	nt	<1	nt	<1	10:26:00			
BH04	0.1	0.1	0.1	0.1	20.1	80.1	nt	<1	nt	<1	11:36:00			
WS01	0.1	0.8	0.1	0.8	19.0	80.1	nt	1	nt	9	10:55:00			
WS02	0.2	1.7	0.2	1.5	18.8	79.6	nt	<1	nt	<1	10:39:00			
WS10	0.2	1.7	0.2	1.7	18.5	79.1	nt	<1	nt	1	11:52:00			
II														

				LANDGAS	- PHYSIC	CAL PARA	METERS
Exploratory	Atmos	Atmos	BH F	Flow	BH Pre		
Hole No	Pressure	Temp (°C)	Peak	Steady	Peak	Steady	Remarks
TIOIC INO	(m bar)	remp (c)	(L/hr)	(L/hr)	(mbar)	(mbar)	
BH03	1016	nt	0.1	0.1	0.07	0.07	
BH04	1016	nt	0.1	0.1	0.05	0.05	
WS01	1016	nt	0.2	0.2	-0.03	-0.03	
WS02	1013	nt	0.1	0.1	0.03	0.03	
WS10	1016	nt	0.1	0.1	0.01	0.01	

AMBIENT A	TMOSPHERIC COND	ITIONS	ATMOSPHERIC PRESSURE CONDITIONS				
Parameter	Before Monitoring	After Monitoring					
CH ₄ (% vol)	0.1	0.1	3 days prior (m bar)	1016			
CO ₂ (% vol)	0.1	0.1	2 days prior (m bar)	1016			
O ₂ (% vol)	20.9	20.9	1 day prior (m bar)	1023			
PID (ppm)	nt	nt	during (m bar)	1022			
Atmos Press. (m bar)	1013	1016	1 day post (m bar)	1019			

7 10001 (iii bai j	10	, 10	10		r day pos	c (III bai)			1017	
		GI	ROUNDWA	TER / NA	PL - PHY	SIO-CHE	MICAL PA	ARAMETER	S		
E. mla maka m	Water	Base	LNAPL	DNAPL							
Exploratory	Surface	Depth	Surface	Surface	ORP	SPC	С	Ph	DO	Temp	Remarks
Hole No	(mbgl)	(mbgl)	(mbgl)	(mbgl)	(mV)	(µs/cm)	(μs/cm)	(value)	(mg/L)	(°C)	
BH03	2.80	4.44	nd	nd	56.1	384.0	329.0	7.9	7.4	17.4	
BH04	2.11	3.13	nd	nd	11.2	455.1	389.9	8.3	3.2	17.4	
WS01	1.85	1.95	nd	nd	nt	nt	nt	nt	nt	nt	
WS02	Dry	0.96	nd	nd	nt	nt	nt	nt	nt	nt	
WS10	Dry	0.77	nd	nd	nt	nt	nt	nt	nt	nt	

Notes nt = not tested nd = not detected

Data Compiled by: SB Data Checked by: SR

WYG Environmental Planning and Transport LANDGAS AND GROUNDWATER MONITORING RESULTS

5th Floor, Longcross Court, 47 Newport Road, Cardiff, CF24 0AD

Weather: Overcast and Drizzly

 EQUIPMENT USED

 Type
 Make
 Serial
 Last Calibrated

 Gas Analyser
 Landtec GA5000
 G502044
 Mar-19

 Interface Meter
 Solinst
 122-004988-1
 N/A

	LANDGAS CONCENTRATIONS - INSTALLATION CONDITIONS													
Evploratory	Pe	ak		Steady										
Exploratory Hole No	CH ₄	CO ₂	CH ₄	CO ₂	02	BAL	PID	H ₂ S	HCN	CO	Time			
TIOIE NO	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	Time			
BH03	0.1	0.7	0.1	0.7	19.4	79.8	nt	<1	nt	2	15:38:00			
BH04	0.1	0.6	0.1	0.6	19.9	79.5	nt	<1	nt	2	16:04:00			
WS01	0.1	0.4	0.1	0.4	20.1	79.4	nt	<1	nt	<1	15:54:00			
WS02	0.2	3.9	0.2	3.9	17.7	78.2	nt	<1	nt	<1	15:18:00			
WS10	0.2	3.8	0.2	3.8	14.5	81.5	nt	<1	nt	5	15:32:00			
II	I			I	I		I		I	I				

				LANDGAS	- PHYSIC	CAL PARA	METERS
Exploratory	Atmos	Atmos	BH I	Flow	BH Pre	essure	
Hole No	Pressure	Temp (°C)	Peak	Steady	Peak	Steady	Remarks
TIOIE NO	(m bar)	Tellip (C)	(L/hr)	(L/hr)	(mbar)	(mbar)	
BH03	997	nt	0.1	0.1	0.34	0.12	
BH04	997	nt	0.2	0.2	-0.34	-0.26	
WS01	997	nt	0.2	0.2	0.19	0.17	
WS02	996	nt	0.3	0.3	-0.09	-0.03	
WS10	995	nt	0.2	0.2	0.19	0.14	

AMBIENT A	TMOSPHERIC COND	ITIONS	ATMOSPHERIC PRESSURE CONDITIONS				
Parameter	Before Monitoring	After Monitoring					
CH ₄ (% vol)	0.3	0.1	3 days prior (m bar)	1003			
CO ₂ (% vol)	0.1	0.1	2 days prior (m bar)	1009			
O ₂ (% vol)	20.9	20.3	1 day prior (m bar)	1010			
PID (ppm)	nt	nt	during (m bar)	1006			
Atmos Press. (m bar)	997	997	1 day post (m bar)	1015			

7 1000 1 1 0001 (m bar j	,	,	,	•	± day pos	c (III bai)			1010	
		GI	ROUNDWA	TER / NA	PL - PHY	SIO-CHE	MICAL PA	ARAMETERS	S		
Cymlouston	Water	Base	LNAPL	DNAPL		Water Quality Indicators					
Exploratory Hole No	Surface	Depth	Surface	Surface	ORP	SPC	С	Ph	DO	Temp	Remarks
noie No	(mbgl)	(mbgl)	(mbgl)	(mbgl)	(mV)	(µs/cm)	(μs/cm)	(value)	(mg/L)	(°C)	
BH03	2.69	4.44	nd	nd	nt	nt	nt	nt	nt	nt	
BH04	2.12	3.17	nd	nd	nt	nt	nt	nt	nt	nt	
WS01	1.86	1.96	nd	nd	nt	nt	nt	nt	nt	nt	
WS02	DRY	0.95	nd	nd	nt	nt	nt	nt	nt	nt	
WS10	0.77	0.77	nd	nd	nt	nt	nt	nt	nt	nt	

Notes nt = not tested nd = not detected

Data Compiled by: SB Data Checked by: SR

Trinity Fields Ground Investigation Report

APPENDIX H – CIRIA C552 RISK METHODOLOGY

Trinity Fields Ground Investigation Report

The following tables are derived from CIRIA C552 and have been used to define the risk rating presented in the Qualitative Risk Assessment matrix.

Classification of consequence

classification of consequence						
Classification	Definition					
Severe	Short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short term risk of pollution (note; Water Resources Act contains no scope for considering significant pollution) of sensitive water resource. Catastrophic damage to building/property. A short-term risk to a particular ecosystem, or organism forming part of such ecosystem. (Note the definitions of ecological systems within the Draft Circular on Contaminated Land DETR, 2000).					
Medium	Chronic damage to human health ('significant harm', as defined In DETR, 2000). Pollution of sensitive water resources (note; Water Resources Act contains no scope for considering significant pollution). A significant change in a particular ecosystem, or an organism forming part of such an ecosystem. (Note the definitions of ecological systems within the Draft Circular on Contaminated Land DETR, 2000).					
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm', as defined In DETR, 2000). Damage to sensitive buildings/structures/services or the environment.					
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc). Easily repairable effects of damage to buildings, structures and services.					

Classification of probability

Classification	Definition						
High	There is a pollution linkage and an event that either appears very likely in the short term						
likelihood	and almost inevitable over the long term or there is evidence at the receptor of harm or						
	pollution.						
Likely	There is a pollutant linkage and all the elements are present and in the right place,						
	which means that it is probable that an event will occur. Circumstances are such that an						
	event is not inevitable, but possible in the short term and likely over the long term.						
Low	There is a pollution linkage and circumstances are possible under which an event could						
likelihood	occur. However, it is by no means certain that even over a longer period that such an						
	event would take place, and is even less likely in the shorter term.						
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an						
	event would occur even in the very long term.						

Matrix of consequence against probability to gain a risk classification

		Consequence				
		Severe	Medium	Mild	Minor	
Probability	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk	
	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk	
	Low likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk	
Prol	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk	